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Abstract. The purpose of this paper is the introduction and the study of the new con-
cept that of continuous controlled K-g-Frame for Hilbert C∗-Modules which is a gener-
alization of controlled K-g-Frames in Hilbert C*-Modules in discrete case. Also, we give
some new properties.

1. Introduction and preliminaries

The concept of frames in Hilbert spaces has been introduced by Duffin and Schaef-
fer [8] in 1952 to study some deep problems in nonharmonic Fourier series. After the
fundamental paper [6] by Daubechies, Grossman and Meyer, frame theory began to be
widely used, particularly in the more specialized context of wavelet frame and Gabor
frame [10]. Frames have been used in signal processing, image processing, data com-
pression and sampling theory.

The concept of a generalization of frame to a family indexed by some locally compact
space endowed with a Radon measure was proposed by G. Kaiser [12] and independently
by Ali, Antoine and Gazeau [1]. These frames are known as continuous frames. Gabardo
and Han in [9] called them frames associated with measurable spaces, Askari-Hemmat,
Dehghan and Radjabalipour in [3] called them generalized frames and in mathematical
physics they are know as energy-staes.

In 2012, L. Gavruta [11] introduced the notion of K-frame in Hilbert space to study
the atomic systems with respect to a bounded linear operator K. Controlled frames in
Hilbert spaces have been introduced by P. Balazs [4] to improve the numerical efficiency
of iterative algorithms for inverting the frame operator.

Controlled frames in C∗-modules were introduced by Rashidi and Rahimi [17], where
the authors showed that they share many useful properties with their corresponding
notions in a Hilbert spaces. Finally, we note that controlled K-g- frames in Hilbet spaces
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have been introduced by Dingli Hua and Yongdong Huang [13]. For more details, see
[14–16, 19, 21, 23–27].

In this paper we introduce the notion of a continuous controlled K-g-frame in Hilbert
C∗-modules.

In the following we briefly recall the definitions and basic properties of C∗-algebras
and Hilbert A-modules. Our references for C∗-algebras are [5, 7]. For a C∗-algebra A if
a ∈ A is positive we write a ≥ 0 and A+ denotes the set of all positive elements of A.

Definition 1.1. [20] Let A be a unital C∗-algebra and H be a left A-module, such that
the linear structures of A and H are compatible. H is a pre-Hilbert A-module if H is
equipped with an A-valued inner product 〈., .〉A : H×H → A, such that is sesquilinear,
positive definite and respects the module action. In the other words,

(i) 〈x, x〉A ≥ 0 for all x ∈ H and 〈x, x〉A = 0 if and only if x = 0.
(ii) 〈ax+ y, z〉A = a〈x, z〉A + 〈y, z〉A for all a ∈ A and x, y, z ∈ H.

(iii) 〈x, y〉A = 〈y, x〉∗A for all x, y ∈ H.

For x ∈ H,we define ||x|| = ||〈x, x〉A||
1
2 . IfH is complete with ||.||, it is called a HilbertA-

module or a HilbertC∗-module overA. For every a inC∗-algebraA, we have |a| = (a∗a)
1
2

and the A-valued norm onH is defined by |x| = 〈x, x〉
1
2
A for x ∈ H.

LetH and K be two Hilbert A-modules. A map T : H → K is said to be adjointable if
there exists a map T ∗ : K → H such that 〈Tx, y〉A = 〈x, T ∗y〉A for all x ∈ H and y ∈ K.

We reserve the notation End∗A(H,K) for the set of all adjointable operators fromH to
K and End∗A(H,H) is abbreviated to End∗A(H).

The following lemmas will be used to prove our mains results

Lemma 1.2. [2]. Let H and K two Hilbert A-modules and T ∈ End∗A(H,K). Then the
following statements are equivalente,

(i) T is surjective.
(ii) T ∗ is bounded below with respect to norm, i.e, there is m > 0 such that ‖T ∗x‖ ≥ m‖x‖,

x ∈ K.
(iii) T ∗ is bounded below with respect to the inner product, i.e, there is m′ > 0 such that,

〈T ∗x, T ∗x〉A ≥ m′〈x, x〉A, x ∈ K

.

For the following theorem, R(T ) denote the range of the operattor T .

Theorem 1.3. [28] LetH be a HilbertA-module over a C∗-algebraA. Let T, S ∈ End∗A(H).
If R(S) is closed, then the following statements are equivalent:

(1) R(T ) ⊆ R(S).
(2) TT ∗ ≤ λ2SS∗ for some λ ≥ 0.
(3) There exists Q ∈ End∗A(H) such that T = SQ.
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2. Continuous controlled K-g-frames for Hilbert C∗-modules

Let X be a Banach space, (Ω, µ) a measure space, and f : Ω → X a measurable func-
tion. Integral of the Banach-valued function f has been defined by Bochner and others.
Most properties of this integral are similar to those of the integral of real-valued func-
tions. Since every C∗-algebra and Hilbert C∗-module is a Banach space thus we can use
this integral and its properties.

Let H and K be two Hilbert C∗-modules, {Kw : w ∈ Ω} is a family of subspaces of K,
and End∗A(H,Kw) is the collection of all adjointable A-linear maps fromH into Kw. We
define

l2(Ω, {Kw}ω∈Ω) =

{
x = {xw}w∈Ω : xw ∈ Kw,

∥∥∥∥∫
Ω

|xw|2dµ(w)

∥∥∥∥ <∞} .
For any x = {xw : w ∈ Ω} and y = {yw : w ∈ Ω}, if the A-valued inner product is
defined by 〈x, y〉 =

∫
Ω
〈xw, yw〉Adµ(w), the norm is defined by ‖x‖ = ‖〈x, x〉A‖

1
2 . The

l2(Ω, {Kw}ω∈Ω) is a Hilbert C∗-module (see [18]).
Let A be a C∗-algebra, l2(A) is defined by,

l2(A) = {{aω}w∈Ω ⊆ A : ‖
∫

Ω

aωa
∗
ωdµ(ω)‖ <∞}.

l2(A) is a Hilbert C∗-module with pointwise operations and the inner product defined
by,

〈{aω}w∈Ω, {bω}w∈Ω〉 =

∫
Ω

aωb
∗
ωdµ(ω), {aω}w∈Ω, {bω}w∈Ω ∈ l2(A),

and,

‖{aω}w∈Ω‖ = (

∫
Ω

aωa
∗
ωdµ(ω))

1
2 .

Let GL+(H) be the set of all positive bounded linear invertible operators on H with
bounded inverse.

Definition 2.1. [14] Let Λ = {Λw}w∈Ω be a family in End∗A(H,Kw) for all ω ∈ Ω, and
C,C

′ ∈ GL+(H). We say that the family Λ is a (C,C
′
)-controlled continuous g-frame for

Hilbert C∗-module H with respect to {Kw : w ∈ Ω} if it is a continuous g-Bessel family
and there is a pair of constants 0 < A,B such that, for any f ∈ H,

A〈f, f〉A ≤
∫

Ω

〈ΛwCf,ΛwC
′
f〉Adµ(w) ≤ B〈f, f〉A . (2.1)

A and B are called the (C,C
′
)-controlled continuous g-frames bounds.

Definition 2.2. Let H be a Hilbert A-module over a unital C∗-algebra, and C,C ′ ∈
GL+(H). A family of adjointable operators {Λω}w∈Ω ⊂ End∗A(H,Kw) is said to be
a continuous (C,C

′
)-controlled K-g-frame for Hilbert C∗-module H with respect to

{Kw : w ∈ Ω} if
• For all f ∈ H, the function: ω → Λωf is measurable.
• There exist two positive elements A and B such that

A〈K∗f,K∗f〉A ≤
∫

Ω

〈ΛωCf,ΛωC
′f〉Adµ(w) ≤ B〈f, f〉A, f ∈ H. (2.2)



Functional Analysis 4

The elements A and B are called continuous (C,C
′
)-controlled K-g-frame bounds.

If only the right-hand inequality of (2.2) is satisfied, we call a continuous (C,C
′
)-

controlled Bessel K-g-frame with Bessel bound B.

Example 2.3. LetH =

{
M =

(
a b 0 0

0 c 0 d

)
/ a, b, c, d ∈ C

}
,

and A =

{(
a b

c d

)
/ a, b, c, d ∈ C

}
It’s clair that H respectively A is a Hilbert space respectively a C∗-algebra. Also it’s
known thatH is a Hilbert A-module.
Let C and C ′ be two operators respectively defined as follow,

C : H −→ H

M −→ αM

and

C
′
: H −→ H

M −→ βM

where α and β are two reels numbers strictly greater than zero.
It’s clair that C,C ′ ∈ Gl+(H).
Indeed, for each M ∈ H one has

C−1(M) = α−1M and (C
′
)−1(M) = β−1M.

Let Ω = [0, 1] endewed with the lebesgue’s measure. It’s clear that a measure space.
Moreover, for ω ∈ Ω, we define the operator Λw : H → H by,

Λw(M) = w

(
0 b 0 0

0 c 0 0

)
,

Λw is linear, bounded and selfadjoint.
In addition, for M ∈ H, we have,

∫
Ω

〈ΛwCM,ΛwC
′
M〉Adµ(ω) =

∫
Ω

αβ

(
0 b 0 0

0 c 0 0

)
0 b

wb̄ wc̄

0 0

0 c

 dµ(ω)

=

∫
Ω

αβ

(
|b|2 bc̄

cb̄ |c|2

)
w2dµ(ω).

It’s clear that, (
|b|2 bc̄

cb̄ |c|2

)
≤

(
|a|2 + |b|2 bc̄

cb̄ |c|2 + |d|2

)
= ‖M‖2

A.
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Then we have ∫
Ω

〈ΛwCM,ΛwC
′
M〉Adµ(ω) ≤ αβ

3
‖M‖2

A.

Which show that the family (Λω)ω∈Ω is a continuous (C,C
′
)-controlled Bessel sequence

forH with αβ
3

as bound.
But if b = c = 0, it’s impossible to found a positive scalar A such that

A‖M‖2
A ≤

∫
Ω

〈ΛwCM,ΛwC
′
M〉Adµ(ω) =

(
0 0

0 0

)
,

where

M =

(
a 0 0 0

0 0 0 d

)
and a, b > 0.

So, (Λω)ω∈Ω is not a continuous (C,C
′
)-controlled frame forH.

But, if we consider the operator

K : H −→ H(
a b 0 0

0 c 0 d

)
−→

(
0 b 0 0

0 c 0 0

)
.

Wich’s linear, bounded and selfadjoint, we found

〈K∗M,K∗M〉 =

(
|b|2 bc̄

cb̄ |c|2

)
.

Then (Λω)ω∈Ω is a continuous (C,C
′
)-controlled K-g-frame forH.

Remark 2.4. Every continuous (C,C ′)−controlled g-frame for H is a continuous
(C,C ′)−controlled K-g-frame for H. Indeed, if {Λω}w∈Ω is a continuous (C,C

′
)-

controlled g-frame for Hilbert C∗-module H with respect to {Kw : w ∈ Ω}, then there
exist a constants A,B > 0 such that ,

A〈f, f〉A ≤
∫

Ω

〈ΛωCf,ΛωC
′f〉Adµ(w) ≤ B〈f, f〉A, f ∈ H.

But,
〈K∗f,K∗f〉A ≤ ‖K‖2〈f, f〉A, f ∈ H.

So,

A‖K‖−2〈K∗f,K∗f〉A ≤
∫

Ω

〈ΛωCf,ΛωC
′f〉Adµ(w) ≤ B〈f, f〉A, f ∈ H.

Hence, {Λω}w∈Ω is a continuous (C,C
′
)-controlled K-g-frame for Hilbert C∗-module H

with respect to {Kw : w ∈ Ω}.

Let {Λω}i∈Ω be a continuous (C,C ′)−controlled Bessel K-g-frame for Hilbert C∗-
moduleH over A with respect to {Kw : w ∈ Ω} with bounds A and B.

We define the operaror T(C,C′ ) by:

T(C,C′ ) : l2(Ω, {Kw}w∈Ω)→ H,
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such that:

T(C,C′ )({yw}w∈Ω) =

∫
Ω

(CC
′
)

1
2 Λ∗ωyωdµ(w), {yw}w∈Ω ∈ l2(Ω, {Kw}w∈Ω).

The bounded linear operator T(C,C′ ) is called the (C,C
′
) synthesis operator of Λ.

The operator:
T ∗

(C,C′ )
: H → l2(Ω, {Kw}w∈Ω),

is given by:
T ∗

(C,C′ )
(x) = {Λω(C

′
C)

1
2x}ω∈Ω, x ∈ H, (2.3)

is called the (C,C
′
) analysis operator for Λ.

Indeed, we have for all x ∈ H and {yw}w∈Ω ∈ l2(Ω, {Kw}w∈Ω)

〈T(C,C′ )({yw}w∈Ω), x〉A = 〈
∫

Ω

(CC
′
)

1
2 Λ∗ωyωdµ(w), x〉A

=

∫
Ω

〈(CC ′
)

1
2 Λ∗ωyω, x〉Adµ(w)

=

∫
Ω

〈yω,Λω(CC
′
)

1
2x〉Adµ(w)

= 〈{yw}w∈Ω, {Λω(C
′
C)

1
2x}ω∈Ω〉l2(Ω,{Kw}w∈Ω)

= 〈{yw}w∈Ω, T
∗
(C,C′ )

(x)〉l2(Ω,{Kw}w∈Ω).

Which shows that T ∗
(C,C′ )

is the adjoint of T(C,C′ ). If C and C ′ commute between them,
and commute with the operators Λ∗ωΛω for each ω ∈ Ω. We define the frame operator by:

S(C,C′ ) :H −→ H

x −→ S(C,C′ )x = T(C,C′ )T
∗
(C,C′ )

x =

∫
Ω

C
′
Λ∗wΛwCxdµ(w).

As consequence on has the following proposition.

Proposition 2.5. The operator S(C,C′ ) is positive, sefladjoint, and bounded.

Proposition 2.6. LetK ∈ End∗A(H) andC,C ′ ∈ GL+(H). Suppose that C and C’ commutes
with each other and commute with the operators Λ∗ωΛω for each ω ∈ Ω. A family {Λω}w∈Ω is
a continuous (C,C

′
)-controlled Bessel K-g-frames for H with respect to {Kw : w ∈ Ω} with

bounds B if and only if the operator T(C,C′ ) is well defined and bounded with ‖T(C,C′ )‖ ≤
√
B.

Proof. (1) =⇒ (2)

Let {Λw, w ∈ Ω} be a (C,C
′
)-controlled continuous K-g-Bessel family forHwith respect

{Kω}ω∈Ω with bound B.
Then we have,

‖
∫

Ω

〈ΛwCx,ΛwC
′
x〉Adµ(w)‖ ≤ B‖x‖2, x ∈ H. (2.4)

For all {yw}w∈Ω ∈ l2(Ω, {Kw}w∈Ω), we have,

‖TCC′ ({yw}w∈Ω)‖2 = sup
x∈H,‖x‖=1

‖〈TCC′ ({yw}w∈Ω), x〉A‖2.
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Hence,

‖TCC′ ({yw}w∈Ω)‖2 = sup
x∈H,‖x‖=1

‖〈
∫

Ω

(CC
′
)

1
2 Λ∗ωyωdµ(w), x〉A‖2

= sup
x∈H,‖x‖=1

‖
∫

Ω

〈(CC ′
)

1
2 Λ∗ωyω, x〉Adµ(w)‖2

= sup
x∈U,‖x‖=1

‖
∫

Ω

〈yω,Λω(CC
′
)

1
2x〉Adµ(w)‖2

≤ sup
x∈U,‖x‖=1

‖
∫

Ω

〈yω, yω〉Adµ(w)‖‖
∫

Ω

〈Λω(CC
′
)

1
2x,Λω(CC

′
)

1
2x〉Adµ(w)‖

= sup
x∈U,‖x‖=1

‖
∫

Ω

〈yω, yω〉Adµ(w)‖‖
∫

Ω

〈ΛωCx,ΛωC
′
x〉Adµ(w)‖

≤ sup
x∈H,‖x‖=1

‖
∫

Ω

〈yω, yω〉Adµ(w)‖B‖x‖2 = B‖{yω}ω∈Ω‖2.

Then we have

‖TCC′ ({yw}w∈Ω)‖2 ≤ B‖{yω}ω∈Ω‖2 =⇒ ‖TCC′‖ ≤
√
B.

We conclude that the operator TCC′ is well defined and bounded.
(2) =⇒ (1)

If (2) holds, then for any x ∈ H, we have:

∫
Ω

〈ΛwCx,ΛwC
′
x〉Adµ(w) =

∫
Ω

〈C ′
Λ∗wΛwCx, x〉Adµ(w)

=

∫
Ω

〈(CC ′
)

1
2 Λ∗wΛw(CC

′
)

1
2x, x〉Adµ(w)

=

∫
Ω

〈Λw(CC
′
)

1
2x,Λw(CC

′
)

1
2x〉Adµ(w)

= 〈{Λw(CC
′
)

1
2x}ω∈Ω, {Λw(CC

′
)

1
2x}ω∈Ω〉

= 〈T ∗
(C,C′ )

(x), T ∗
(C,C′ )

(x)〉.

Or,
〈T ∗

(C,C′ )
(x), T ∗

(C,C′ )
(x)〉 ≤ ‖T ∗

(C,C′ )
‖2〈x, x〉A.

As ‖TCC′‖ ≤
√
B, we have :∫

Ω

〈ΛwCx,ΛwC
′
x〉Adµ(w) ≤ B‖x‖2,

which end the proof. �

Lemma 2.7. Let {Λω}w∈Ω ⊂ End∗A(H,Kw) be a continuous (C,C ′)−controlled Bessel K-g-
frame for Hilbert C∗- module H with respect to {Kw : w ∈ Ω}. Then for any K ∈ End∗A(H),
the family {ΛωK}w∈Ω is a continuous (C,C ′)−controlled Bessel K-g-frame for Hilbert C∗-
moduleH.
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Proof. Assume that {Λω}w∈Ω is a continuous (C,C ′)−controlled Bessel K-g-frame for
Hilbert C∗- moduleH with respect to {Kw : w ∈ Ω} with bound B. Then,∫

Ω

〈ΛωCf,ΛωC
′f〉Adµ(w) ≤ B〈f, f〉A, f ∈ H.

So, ∫
Ω

〈ΛωCKf,ΛωC
′Kf〉Adµ(w) ≤ B〈Kf,Kf〉A, f ∈ H.

Hence, ∫
Ω

〈ΛωKCf,ΛωKC
′f〉Adµ(w) ≤ B〈Kf,Kf〉A ≤ ‖K‖2B〈f, f〉A, f ∈ H.

The results holds. �

Lemma 2.8. Let K ∈ End∗A(H) and C,C ′ ∈ GL+(H). Let {Λω}w∈Ω be a continuous
(C,C ′)−controlled Bessel K-g-frame for Hilbert C∗- module H with respect to {Kw : w ∈ Ω}.
{Λω}w∈Ω is a continuous (C,C ′)−controlled K- g-frame if and only if there exists a constant
A > 0 such that

AKK∗ ≤ S(C,C′).

Proof. The family {Λω}w∈Ω is a continuous (C,C ′)−controlled K- g-frame if and only if

A〈K∗f,K∗f〉A ≤
∫

Ω

〈ΛωCf,ΛωC
′f〉Adµ(w) ≤ B〈f, f〉A, f ∈ H. (2.5)

If and only if,
〈AKK∗f, f〉A ≤ 〈S(C,C′)f, f〉A ≤ 〈Bf, f〉A, f ∈ H. (2.6)

If
A〈K∗f,K∗f〉A ≤ 〈Sf, f〉A,

and the family {Λω}w∈Ω is a continuous (C,C ′)−controlled Bessel K-g-frame sequence
then:

〈Sf, f〉A ≤ B〈f, f〉A, f ∈ H.
Wich completes the proof.

�

Theorem 2.9. Let K ∈ End∗A(H) and C,C ′ ∈ GL+(H). Suppose that K∗ commute with C
and C’. If {Λω}w∈Ω is a continuous (C,C ′)−controlled g-frame for Hilbert C∗- module H with
respect to {Kw : w ∈ Ω}, then {ΛωK

∗}w∈Ω is a continuous (C,C ′)−controlled K- g-frame for
Hilbert C∗- moduleH with respect to {Kw : w ∈ Ω}.

Proof. Let {Λω}w∈Ω be a continuous (C,C ′)−controlled g-frame for Hilbert C∗- module
H with respect to {Kw : w ∈ Ω}, then,

A〈f, f〉A ≤
∫

Ω

〈ΛωCf,ΛωC
′f〉Adµ(w) ≤ B〈f, f〉A, f ∈ H. (2.7)

Hence,

A〈K∗f,K∗f〉A ≤
∫

Ω

〈ΛωCK
∗f,ΛωC

′K∗f〉Adµ(w) ≤ B〈K∗f,K∗f〉A, f ∈ H.
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Therefore,

A〈K∗f,K∗f〉A ≤
∫

Ω

〈ΛωK
∗Cf,ΛωK

∗C ′f〉Adµ(w) ≤ B‖K∗‖2〈f, f〉A, f ∈ H.

We This conclude that {ΛωK
∗}w∈Ω is a continuous (C,C ′)−controlled K- g-frame for

Hilbert C∗- moduleH with respect to {Kw : w ∈ Ω}. �

Lemma 2.10. LetK ∈ End∗A(H) andC,C ′ ∈ GL+(H). Suppose that C and C’ commute with
each other and commute with S. Then {Λω}w∈Ω is a continuous (C,C ′)−controlled K-g-frame
forHwith respect to {Kw : w ∈ Ω} if and only if {Λω}w∈Ω is a continuous (C ′C, IH)−controlled
K-g-frame for Hilbert C∗- moduleH with respect to {Kw : w ∈ Ω}.

Proof. For all f ∈ H we have,

〈(C ′)−1S(C,C′)C
−1f, f〉A =

∫
Ω

〈C ′Λ∗ωΛωCC
−1f, (C ′)−1f〉Adµ(w)

=

∫
Ω

〈Λ∗ωΛωf, f〉Adµ(w)

= 〈Sf, f〉A,

where
Sf =

∫
Ω

Λ∗ωΛωfdµ(w).

Hence,
S = (C ′)−1S(C,C′)C

−1

For any f ∈ H, we have,∫
Ω

〈ΛωCf,ΛωC
′f〉Adµ(w) =

∫
Ω

〈C ′Λ∗ωΛωCf, f〉Adµ(w)

= 〈S(C,C′)f, f〉A
= 〈C ′SCf, f〉A
= 〈CSC ′f, f〉A
= 〈SC ′Cf, f〉A

=

∫
Ω

〈Λ∗ωΛωC
′Cf, f〉Adµ(w)

=

∫
Ω

〈ΛωC
′Cf,Λωf〉Adµ(w)

Hence, {Λω}w∈Ω is a continuous (CC ′, IH)−controlled K-g-frame for H with bounds A
and B respect to {Kw : w ∈ Ω} if and only if,

A〈K∗f,K∗f〉A ≤
∫

Ω

〈ΛωC
′Cf,Λωf〉Adµ(w) ≤ B〈f, f〉A, f ∈ H.

The results holds. �

Lemma 2.11. Let K ∈ End∗A(H) and C,C ′ ∈ GL+(H). Then {Λω}w∈Ω is a continuous
(C,C ′)−controlled K-g-frame for Hilbert C∗-module H with respect to {Kw : w ∈ Ω} if and
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only if {Λω}w∈Ω is a continuous ((C ′C)
1
2 , ((C ′C)

1
2 )−controlled K-g-frame for Hilbert H with

respect to {Kw : w ∈ Ω}.

Proof. The proof is similar as proof of lemma 2.10.
�

Proposition 2.12. Let K ∈ End∗A(H) and C,C ′ ∈ GL+(H). Let {Λω}w∈Ω be a continuous
(C,C ′)−controlled K-g-frame forHwith respect to {Kw : w ∈ Ω}. Suppose thatR(K) is closed.
If T ∈ End∗A(H) with R(T ) ⊂ R(K), then {Λω}w∈Ω is a continuous (C,C ′)−controlled T-g-
frame forH with respect to {Kw : w ∈ Ω} .

Proof. Let {Λω}w∈Ω be a continuous (C,C ′)−controlled K-g-frame forH with respect to
{Kw : w ∈ Ω}. Then there exists A,B > 0 such that,

A〈K∗f,K∗f〉A ≤
∫

Ω

〈ΛωCf,ΛωC
′f〉Adµ(w) ≤ B〈f, f〉A.

From lemma 1.3 and R(T ) ⊂ R(K), there exists some m > 0 such that

TT ∗ ≤ mKK∗.

Hence,
A

m
〈T ∗f, T ∗f〉A ≤ A〈K∗f,K∗f〉A ≤

∫
Ω

〈ΛωCf,ΛωC
′f〉Adµ(w) ≤ B〈f, f〉A.

So, {Λω}w∈Ω is a continuous (C,C ′)−controlled T-g-frame for H with respect to {Kw :

w ∈ Ω} .
�

Theorem 2.13. Let K1, K2 ∈ End∗A(H) such that R(K1) ⊥ R(K2). If {Λω}w∈Ω is a
continuous (C,C ′)−controlled K1-g-frame for H as well a K2-g-frame for H with respect to
{Kw : w ∈ Ω} and α , β are scalers. Then {Λω}w∈Ω is a continuous (C,C ′)−controlled
(αK1 + βK2)-g-frame and a continuous (C,C ′)−controlled (K1K2)-g-frame for H with re-
spect to {Kw : w ∈ Ω} .

Proof. Let {Λω}w∈Ω ⊂ End∗A(H,Kw) be a continuous (C,C ′)−controlled K1-g-frame for
H as well a K2-g-frame forH with respect to {Kw : w ∈ Ω}.
Then there exist positive constants A1, A2, B1, B2 such that,

A1〈K∗1f,K∗1f〉A ≤
∫

Ω

〈ΛωCf,ΛωC
′f〉Adµ(w) ≤ B1〈f, f〉A.

A2〈K∗2f,K∗2f〉A ≤
∫

Ω

〈ΛωCf,ΛωC
′f〉Adµ(w) ≤ B2〈f, f〉A.

For any f ∈ H, we have,
〈(αK1 + βK2)∗f, (αK1 + βK2)∗f〉A =〈αK∗1f + βK∗2f, αK

∗
1f + βK∗2f〉A

= |α|2〈K∗1f,K∗1f〉A + αβ〈K∗1f,K∗2f〉+ αβ〈K∗2f,K∗1f〉+ |β|2〈K∗2f,K∗1f〉

.
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Since R(K1) ⊥ R(K2),then,

〈(αK1 + βK2)∗f, (αK1 + βK2)∗f〉A = |α|2〈K∗1f,K∗1f〉+ |β|2〈K∗2f,K∗1f〉A.

Therefore, for each f ∈ H, we have,

A1A2

2(|α|2A2 + |β|2A1)
〈(αK1 + βK2)∗f, (αK1 + βK2)∗f〉A

=
A1A2|α|2

2(|α|2A2 + |β|2A1)
〈K∗1f,K∗1f〉A +

A1A2|β|2

2(|α|2A2 + |β|2A1)
〈K∗2f,K∗2f〉A

≤ 1

2

∫
Ω

〈ΛωCf,ΛωC
′f〉Adµ(w) +

1

2

∫
Ω

〈ΛωCf,ΛωC
′f〉Adµ(w) ≤ B1 +B2

2
〈f, f〉A.

Therefore {Λω}w∈Ω is a continuous (C,C ′)−controlled (αK1 + βK2)-g-frame forH with
respect to {Kw : w ∈ Ω}.
Also for every f ∈ H we have,

〈(K1K2)∗f, (K1K2)∗f〉A = 〈K∗2K∗1f,K∗2K∗1f〉A
≤ ‖K∗2‖2〈K∗1f,K∗1f〉A.

Since {Λω}w∈Ω is a continuous (C,C ′)−controlled K1-g-frame for H with respect to
{Kw : w ∈ Ω}, we have for every f ∈ H,

A1‖K∗2‖−2〈(K1K2)∗f, (K1K2)∗f〉A ≤
∫

Ω

〈ΛωCf,ΛωC
′f〉Adµ(w) ≤ B1〈f, f〉A.

So, {Λω}w∈Ω is a continuous (C,C ′)−controlled (K1K2)-g-frame for H with respect to
{Kw : w ∈ Ω}. �

Corollary 2.14. Let K ∈ End∗A(H). If {Λω}w∈Ω is a continuous (C,C ′)−controlled K-g-
frame forH with respect to {Kw : w ∈ Ω}, then for any operator	 in the subalgebra generated
by K, the family {Λω}w∈Ω is a continuous (C,C ′)−controlled 	-g-frame for H with respect to
{Kw : w ∈ Ω}.
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