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Abstract. This paper is devoted to the study of continuous K − g−frames which are
extension of K− g−frames in Hilbert spaces. First, we give some property of continuous
K − g−frames. Finally, we study the dual continuous K − g−bessel sequence of K −
g−frames.

1. introduction

The concept of frames in Hilbert spaces has been introduced by Duffin and Schaf-
fer [10] in 1952 to study some deep problems in nonharmonic Fourier series, after the
fundamental paper [8] by Daubechies, Grossman and Meyer, frame theory began to be
widely used, particularly in the more specialized context of wavelet frames and Gabor
frames.

The concept of generalization of frames was proposed by G. Kaiser [14] and indepen-
dently by Ali, Antoine and Gazeau [2] to a family indexed by some locally compact space
endowed with a Radon measure. These frames are known as continuous frames. Gabrado
and Han in [12] called these frames, frames associated with measurable spaces, Askari-
Hemmat, Dehghan and Radjabalipour in [5] called them generalized frames and in math-
ematical physics they are referred to as Coherent states [3].

A continuous g-frames (or simply a c-g-frames) was firstly introduced by Abdollah-
pour and Faroughi in [1], it’s an extension of g-frames and continuous frames. Recently,
continuous g-frames in Hilbert spaces have been studied intensively.

For more on frames see [13, 15–19] and references therein.
We begin with a few preliminaries that will be needed. Let H,L be separable Hilbert

spaces, (Ω, µ) a positive measure space. we denote by IH the identity operator on H ,
{Hw}w∈Ω a family of closed subspace of L, and L(H,Hw) the set of all bounded linear
operators from H into Hw. Suppose H0 is a closed subspace of H , we define PH0 is the
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orthogonal projection of H into H0. For K ∈ L(H), the range and null space of K are
denoted byR(K) and N (K), respectively. l2({Hw}w∈Ω) is defined by

l2({Hw}w∈Ω) = {{fw}w∈Ω, fw ∈ Hw, w ∈ Ω,

∫
w∈Ω

‖fw‖2dµ(w) <∞}.

With the inner product given by

〈{fw}w∈Ω, {gw}w∈Ω〉 =

∫
w∈Ω

〈fw, gw〉dµ(w).

It is clear that l2({Hw}w∈Ω) is a Hilbert space.

Definition 1.1. [1] We say that Λ = {Λw ∈ L(H,Hw), w ∈ Ω} is a continuous g−frame
with respect to {Hw}w∈Ω for H if

(1) for each f ∈ H , {Λwf}w∈Ω is strongly measurable.
(2) there are two constants 0 < A ≤ B <∞ such that

A‖f‖2 ≤
∫
w∈Ω

‖Λwf‖2dµ(w) ≤ B‖f‖2, ∀f ∈ H. (1.1)

We call A,B lower and upper continuous g−frame bounds respectively. Λ is called a
tight continuous g−frame if A = B, and a Parseval continuous g−frame if A = B = 1.
A family Λ is called a continuous g−bessel sequence if the right hand inequality in (1.1)
hold. In this case, B is called the bessel constant.

Proposition 1.2. [1] Let {Λw}w∈Ω be a continuous g−frame with respect to {Hw}w∈Ω for H
with frame boundsA,B. Then, there exists a unique positive and invertible operator S : H → H

such that for each f, g ∈ H

〈Sf, g〉 =

∫
w∈Ω

〈f,Λ∗wΛwg〉dµ(w),

and AIH ≤ S ≤ BIH .

Definition 1.3. [4] Suppose that (Ω, µ) is a measure space with positive measure µ and
K ∈ L(H). A family Λ = {Λw ∈ L(H,Hw), w ∈ Ω} which {Hw}w∈Ω is a family of Hilbert
spaces, is called a continuous K − g−frame for H with respect to {Hw}w∈Ω if

(1) for each f ∈ H , {Λwf}w∈Ω is strongly measurable.
(2) there exist constants 0 < A ≤ B <∞ such that

A‖K∗f‖2 ≤
∫
w∈Ω

‖Λwf‖2dµ(w) ≤ B‖f‖2, ∀f ∈ H. (1.2)

The constants A, B are called lower and upper continuous K − g−frame bounds, re-
spectively. If A, B can be chosen such that A = B, then Λ is called a tight continuous
K − g−frame and ifA = B = 1, it is called Parseval continuous K − g−frame. A family
Λ is called a continuous g−Bessel sequence if the right hand inequality in (1.2) holds. In
this case, B is called the Bessel constant.
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Remark 1.4. It should be noted that the continuous g−frame operator S for continuous
K − g−frame {Λw}w∈Ω is not invertible in general, if K has closed range, then

SΛ : R(K)→ S(R(K))

is invertible and self-adjoint.

Definition 1.5. [11] Suppose that (Ω, µ) is a measure space. A family of operators {Λw ∈
L(H,Hw), w ∈ Ω} is a continuous g−orthonormal basis for H with respect to {Hw}w∈Ω

if it satisfies the following:
(1) for all f ∈ H , {Λwf}w∈Ω is strongly-measurable,
(2) for almost all v ∈ Ω ∫

w∈Ω

〈Λ∗wfw,Λ∗vgv〉dµ(w) = 〈fv, gv〉,

(3) for each f ∈ H ,
∫
w∈Ω
‖Λwf‖2dµ(w) = ‖f‖2.

Definition 1.6. [6] Let H1 and H2 be tow Hilbert spaces with inner products 〈., .〉H1 ,
〈., .〉H2 and norms ‖.‖H1 , ‖.‖H2 , respectively, and let operator T : H1 → H2. T is an
isometry if ‖Tf‖H2 = ‖f‖H1 , for all f ∈ H1. T is a co-isometry if its adjoint is an isometry.

Lemma 1.7. [11] Let {θw}w∈Ω be a continuous g−orthonormal basis for H with respect to
{Hw}w∈Ω and {Λw ∈ L(H,Hw), w ∈ Ω} be a family such that {Λwf}w∈Ω is strongly mea-
surable for any f ∈ H . Then {Λw}w∈Ω is a continuous g−bessel family for H with respect to
{Hw}w∈Ω if and only if there exists a unique operator T : H → H such that Λw = θwT

∗, for
almost all w ∈ Ω.

Definition 1.8. [11] Let {θw}w∈Ω be a continuous g−orthonormal basis for H with re-
spect to {Hw}w∈Ω. The operator T in Lemma 1.7 is called the continuous g−preframe
operator associated with {Λw}w∈Ω.

Lemma 1.9. [11] Let {θw}w∈Ω be a continuous g−orthonormal basis and {Λw}w∈Ω be a con-
tinuous g−bessel family forH with repect to {Hw}w∈Ω. Suppose that T and S are the continuous
g−preframe operator and continuous g−frame operator associated with {Λw}w∈Ω, repectively.
Then S = TT ∗.

Lemma 1.10. [9] Let T1 ∈ L(H1, U) and T2 ∈ L(H2, U). the following conditions are equiv-
alent:

(1) R(T1 ⊂ R(T2));
(2) There exists λ > 0 such that T1T

∗
2 ≤ λT2T

∗
2 ;

(3) There exists a bounded operator X ∈ L(H1, H2) such that T1 = T2X .

2. Some consrtuction of continuous K − g−frames

Definition 2.1. A sequence {aw}w∈Ω in C is said to be positively confined if

0 < inf
w∈Ω
|aw| ≤ sup

w∈Ω
|aw| <∞.

Now, we give a result about perturbations of K − g−frames.
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Theorem 2.2. Let {Λw}w∈Ω be a continuousK−g−frame and Γw ∈ L(H,Hw) for allw ∈ Ω.
If there exist constants 0 ≤ α, β < 1

2
, such that for every f ∈ H∫

w∈Ω

‖(awΛw − bwΓw)f‖2dµ(w) ≤ α

∫
w∈Ω

‖awΛwf‖2dµ(w) + β

∫
w∈Ω

‖bwΓwf‖2dµ(w),

then {Γw}w∈Ω is a continuousK−g−frame, where {aw}w∈Ω, {bw}w∈}w∈Ω
are positively confined

sequences.

Proof. Let {Λw}w∈Ω be a continuous K − g−frame with bounds A and B. The parallelo-
gram Law implies that, for each f ∈ H ,∫

w∈Ω

‖bwΓwf‖2dµ(w) =

∫
w∈Ω

‖bwΓwf − awΛwf + awΛwf‖2dµ(w)

≤ 2

(∫
w∈Ω

‖(awΛw − bwΓw)f‖2dµ(w) +

∫
w∈Ω

‖awΛwf‖2dµ(w)

)
≤ 2

(
α

∫
w∈Ω

‖awΛwf‖2dµ(w) + β

∫
w∈Ω

‖bwΓwf‖2dµ(w)

+

∫
w∈Ω

‖awΛwf‖2dµ(w)

)
,

therefore,

(1− 2β)

∫
w∈Ω

|bw|2‖Γwf‖2dµ(w) ≤ 2(α + 1)

∫
w∈Ω

|aw|2‖Λwf‖2dµ(w),

then, ∫
w∈Ω

‖Γwf‖2dµ(w) ≤ 2(α + 1)(supw∈Ω |aw|)2

(1− 2β)(infw∈Ω |bw|)2
B‖f‖2.

For the same reason, we have∫
w∈Ω

‖awΛwf‖2dµ(w)

=

∫
w∈Ω

‖awΛwf − bwΓwf + bwΓwf‖2dµ(w)

≤ 2

(
α

∫
w∈Ω

‖awΛwf‖2dµ(w) + β

∫
w∈Ω

‖bwΓwf‖2dµ(w) +

∫
w∈Ω

‖bwΓwf‖2dµ(w

)
,

hence,

(1− 2α)

∫
w∈Ω

‖awΛwf‖2dµ(w) ≤ 2(1 + β)

∫
w∈Ω

‖bwΓwf‖2dµ(w),

it follows that: ∫
w∈Ω

‖Γwf‖2dµ(w) ≥ (1− 2α)(infw∈Ω |aw|)2

2(1 + β)(supw∈Ω |bw|)2
A‖K∗f‖2.

Therefore, {Γw}w∈Ω is a continous K − g−frame. �

Corollary 2.3. Let {Λw}w∈Ω be a continuous K− g−frame and {Γw}w∈Ω ∈ L(H,Hw) for all
w ∈ Ω. Then, the following statements hold
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(1) If there exists 0 < α < 1
2
, such that for every f ∈ H∫

w∈Ω

‖(Λw − Γw)f‖2dµ(w) ≤ α

∫
w∈Ω

‖Λwf‖2dµ(w),

then {Γw}w∈Ω is a continuous K − g−frame.
(2) If supw∈Ω ‖Λw‖ <

√
2

2
, then the sequence {Λw + Λ2

w}w∈Ω is a continuous K − g−frame.

In the sequel, we investigate the product of continuous K − g−frame and bounded
linear operators as a continuous K − g−frame.

Theorem 2.4. Let T ∈ L(H) be a self-adjoint injective operator and TK = KT . Then,
{Λw}w∈Ω is a continuousK− g−frame if and only if {ΛwT}w∈Ω is a continuousK− g−frame.

Proof. Let T be injective. Then, there exists T̃ ∈ L(H) with T T̃ = IH . Therefore
(T̃ )∗T ∗K∗ = K∗. It follows that for every f ∈ H

‖K∗f‖ = ‖T̃ ∗T ∗K∗f‖

≤ ‖(T̃ )∗‖‖T ∗K∗f‖.

This shows that

‖(T̃ )∗‖−1‖K∗f‖ ≤ ‖T ∗K∗f‖.

Assume that {Λw}w∈Ω is a continuous K − g−frame. Then, there exist A > 0, such that
for all f ∈ H , ∫

w∈Ω

‖ΛwTf‖2dµ(w) ≥ A‖K∗Tf‖2

= A‖K∗T ∗f‖2

= A‖T ∗K∗f‖2

≥ A‖(T̃ )∗‖−2‖K∗f‖2,

hence, {ΛwT}w∈Ω is a continuous K − g−frame.
Conversely, let {ΛwT}w∈Ω be a continuous K − g−frame, since T is self-adjoint

and injective, T is inversible, we have T−1K = KT−1 and T−1is self-adjoint hence,
{Λw}w∈Ω = {ΛwTT

−1}w∈Ω is a continuous K − g−frame. �

IT is well known from [7], if T ∈ L(H), then N (T ∗) = R(T )⊥. Also, if T has closed
range, thenR(T ) = N (T ∗)⊥.

Theorem 2.5. LetK be surjective, T ∈ L(H), and {ΛwT}w∈Ω be a continuousK−g−frame.
Then, the following hold:

(1) T is injective.
(2) If T is self-adjoint and has closed range, then T is invertible and {Λw}w∈}w∈Ω

is a con-
tinuous T−1K − g−frame.

(3) If T is self-adjoint and TK = KT , then {Λw}w∈Ω is a continuous K − g−frame.
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Proof. (1) Assume that {ΛwT}w∈Ω is a continuous K − g−frame with bounds A and B.
Then for every f ∈ H .

A‖K∗f‖2 ≤
∫
w∈Ω

‖ΛwTf‖2dµ(w) ≤ B‖f‖2,

hence, N (T ) is a subspace of N (K∗),since K is surjective

N (K∗) = R(K)⊥ = {0}⊥,

this shows that T is injective.
(2) We have T is injective. Since T is self-adjoint and has closed range

R(T ) = R(T ∗) = N (T )⊥ = H.

It follows that T is surjective, therefore, T is invertible. Let f ∈ H , then, Tg = f for
some g ∈ H . Hence ∫

w∈Ω

‖Λwf‖2dµ(w) =

∫
w∈Ω

‖ΛwTg‖2dµ(w)

≥ A‖K∗g‖2

= A‖K∗T−1f‖2

= A‖(T−1K)∗f‖2.

This implies that {Λw}w∈Ω is a continuous K − g−frame.
(3) This follows from (1) and Theorem 2.4. �

In next result, we give conditions under which the sequence {ΛwT1 + ΓwT2}w∈Ω is a
K−g−frame, where {Λw}w∈Ω and {Γw}w∈Ω are continuousK−g−bessel sequences and
T1, T2 ∈ L(H).

Theorem 2.6. Let {Λw}w∈Ω be a continuous K − g−frame and Γww∈Ω be a continuous
g−bessel sequence. If for every w ∈ Ω,R(Λw) ⊥ R(Γw), then {ΛwT1 + ΓwT2}w∈Ω is a contin-
uous (T ∗1K)− g−frame, where T1, T2 ∈ L(H).

Proof. Let Let {Λw}w∈Ω be a continuous K − g−frame and Γww∈Ω be a continuous
g−bessel sequence. THerefore, there exist constants A1, B1, B2, such that for every
f ∈ H

A1‖K∗f‖2 ≤
∫
w∈Ω

‖Λwf‖2dµ(w) ≤ B1‖f‖2,

and ∫
w∈Ω

‖Γwf‖2dµ(w) ≤ B2‖f‖2.

Since R(Λw) ⊥ R(Γw), we have R(ΛwT1) ⊥ R(ΓwT2) for all w ∈ Ω. Therefore we infer
that

‖ΛwT1f‖ ≤ ‖(ΛwT1 + ΓwT2)f‖, ∀f ∈ H.
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Hence for each f ∈ H

A1‖K∗T1f‖2 ≤
∫
w∈Ω

‖ΛwT1f‖2dµ(w)

≤
∫
w∈Ω

‖(ΛwT1 + ΓwT2)f‖2dµ(w)

=

∫
w∈Ω

‖Λwf‖2dµ(w) +

∫
w∈Ω

‖ΓwT2f‖2dµ(w)

≤ B1‖T1f‖2 +B2‖T2f‖2

≤
(
B1‖T1‖2 +B2‖T2‖2

)
‖f‖2,

therefore, {ΛwT1 + ΓwT2}w∈Ω is a continuous (T ∗1K)− g−frame. �

We conclude this section with the following result.

Corollary 2.7. Let {Λw}w∈Ω be a continuous K − g−frame and {Γw}w∈Ω be a continuous
g−bessel sequence, such that R(Λw) ⊥ R(Γw) for all w ∈ Ω. Then the following statements
hold:

(1) The sequence {ΛwT + ΓwT}w∈Ω is a continuous (T ∗K)− g−frame.
(2) The sequences {Λw + Γw}w∈Ω and {Λw − Γw}w∈Ω are continuous K − g−frames.
(3) If {aw}w ∈ Ω and {bw}w∈Ω are two positively confined sequences, then the sequence
{awΛw + bwΓw}w∈Ω is a continuous K − g−frame.

Proof. The statements (1) and (2) follow at once from Theorem 2.6. For (3), note that if
{aw}w∈Ω and {bw}w∈Ω are positively confined, then {awΛw}w∈Ω and {bwΓw}w∈Ω are con-
tinuous K − g−frames. Since R(Λw) ⊥ R(Γw), we have R(awΛw) ⊥ R(bwΓw) for all
w ∈ Ω. Now apply (2). �

3. Characterizing continuous K − g−frames by quotient maps

Let T1, T2 ∈ L(H). The map [T1/T2] : R(T2) → R(T1) defined by T2f → T2f is
called the quotient map. It is proved that [T1/T2] is a linear operator on H if and only if
N (T2) ⊆ N (T1).

Theorem 3.1. Let {Λw}w∈Ω be a continuous g−bessel sequence with the frame operator S and
K ∈ L(H). THen, {Λw}w∈Ω is a continuous K − g−frame if and only if the quotient operator
[K∗/S

1
2 ] is a bounded linear operator. In this case, K = S

1
2X for some X ∈ L(H).

Proof. First, note that for every f ∈ H , we have

‖S
1
2f‖ = 〈Sf, f〉

=

∫
w∈Ω

〈Λ∗wΛwf, f〉dµ(w)

=

∫
w∈Ω

〈Λwf,Λwf〉dµ(w)

=

∫
w∈Ω

‖Λwf‖2dµ(w). (3.1)
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Now, let {Λw}w∈Ω be a continuous K − g−frame. Then exists constant A > 0, such that

A‖K∗f‖2 ≤
∫
w∈Ω

‖Λwf‖2dµ(w), ∀f ∈ H.

From this and (3.1), we obtain

‖S
1
2f‖2 ≥ A‖K∗f‖2,

hence, N (S
1
2 ) ⊆ N (K∗), which implies that the quotient map

[K∗/S
1
2 ] : R(S

1
2 ) → R(K∗) defined by [K∗/S

1
2 ](S

1
2f) = K∗f is a bounded linear

operator.
Conversely, assume that [K∗/S

1
2 ] is a bounded linear operator Then, there exists c > 0,

such that for all f ∈ H
‖K∗f‖2 ≤ c‖S

1
2f‖2.

From this and (3.1), we infer that

‖K∗f‖2 ≤ c

∫
w∈Ω

‖Λwf‖2dµ(w),

therefore, {Λw}w∈Ω is a continuous K − g−frame.
To complete the proof, let {Λw}w∈Ω be a continuous K − g−frame. then

S ≥ αKK∗ for some α > 0.

By Lemma 1.10 there exists X ∈ L(H), such that K = S
1
2X . �

Corollary 3.2. Let {Λw}w∈Ω be a continuous K − g−frame and n ∈ N. Then , [K∗/S
1
2 ] is a

continuous Kn − g−frame. If K is invertible, then the converse holds.

Proof. Let {Λw}w∈Ω be a continuousK−g−frame and n ∈ N. Then [K∗/S
1
2 ] is a bounded

linear by Theorem 3.1. Hence, there exists C > 0, such that for every f ∈ H

‖K∗f‖ ≤ C‖S
1
2f‖.

Therefore, for every f ∈ H we have

‖(Kn−1)∗(K∗)f‖ ≤ ‖(Kn−1)∗‖‖K∗f‖

≤ C‖(Kn−1)∗‖‖S
1
2f‖.

This shows that [(Kn)∗/S
1
2 ] is a bounded linear operator. That is, {Λw}w∈Ω is a continu-

ous Kn − g−frame.
for the converse, assume that {Λw}w∈Ω is a continuous Kn − g−frame. Note that if K

is invertible, then

K = KnK1−n.

It follows from Lemma 1.10 that:

KK∗ ≤ αKn(Kn)∗.



Functional Analysis 9

for some α > 0. Therefore, for every f ∈ H , we have

‖K∗f‖2 = 〈K∗f,K∗f〉

= 〈KK∗f, f〉

≤ 〈αKn(Kn)∗f, f〉

= α〈(Kn)∗f, (Kn)∗f〉

= α‖(Kn)∗f‖2.

This implies that the quotient operator [K∗/S
1
2 ] is bounded. Thus, {Λw}w∈Ω is a contin-

uous K − g−frame. �

Theorem 3.3. Let {Λw}w∈Ω be a continuous K − g− frame with frame operator S. Then the
following assertion are equivalent

(1) {ΛwT}w∈Ω is a continuous TK − g−frame.
(2) [(TK)∗/(S

1
2T )] is bounded.

(3) [(TK)∗/(T ∗ST )
1
2 ] is bounded.

Proof. For every f ∈ H , we have∫
w∈Ω

(ΛwT )∗(ΛwT )fdµ(w) =

∫
w∈Ω

T ∗Λ∗wΛwTfdµ(w)

= T ∗
(∫

w∈Ω

Λ∗wΛwTfdµ(w)

)
= T ∗STf.

Hence, the frame operator of {ΛwT}w∈Ω is T ∗ST . Now, Theorem 3.1 shows that (1) and
(3) are equivalent.

for every f ∈ H , we have

‖(T ∗ST )
1
2f‖2 = 〈T ∗ST )

1
2f, T ∗ST )

1
2f〉

= 〈(T ∗ST )f, f〉

= 〈STf, Tf〉

= 〈S
1
2Tf, S

1
2Tf

= ‖S
1
2Tf‖2.

Therefore, (2) and (3) are equivalent. �

Corollary 3.4. Let {Λw}w∈Ω be a continuous g−frame. Then, the assertions are equivalent.

(1) {ΛwK}w∈Ω is a continuous K − g−frame.
(2) [K∗/(S

1
2K)] is a bounded.

4. dual of continuous K − g−bessel sequence

Definition 4.1. Suppose that K ∈ L(H) and {Λw}w∈Ω is a continuous K − g−frame
for H with respect to {Hw}w∈Ω. A g−bessel sequence {Γw}w∈Ω for H with respect to
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{Hw}w∈Ω is said to be a dual continuous K − g−bessel sequence of {Λw}w∈Ω if

Kf =

∫
w∈Ω

Λ∗wΓwfdµ(w), ∀f ∈ H

Theorem 4.2. Let K ∈ L(H) and {Λw}w∈Ω be a continuous g−bessel sequence for H with
respect to {Hw}w∈Ω. T is the continuous g−preframe operator associated with {Λw}w∈Ω, then
{Λw}w∈Ω is a continuous K − g−frame if and only ifR(K) ⊂ R(T ).

Proof. Suppose that {Λw}w∈Ω is a continuous K − g−frame with respect to {Hw}w∈Ω.
Then there exists a constant A > 0 such that

A‖K∗f‖2 ≤
∫
w∈Ω

‖Λwf‖2dµ(w), ∀f ∈ H.

Let {θw ∈ L(H,Hw), w ∈ Ω} is the continuous g−orthonormal basis for H with respect
to {Hw}w∈Ω. Then, by Lemma 1.7, we have Λw = θwT

∗, ∀w ∈ Ω, so

A‖K∗f‖2 ≤
∫
w∈Ω

‖θwT ∗f‖2dµ(w) = ‖T ∗f‖2, ∀f ∈ H,

hence, AKK∗ ≤ TT ∗. Therefore by Lemma 1.10, we haveR(K) ⊂ R(T ).
Conversely, assume thatR(K) ⊂ R(T ). By Lemma 1.10, there exists a constant λ > 0

such that KK∗ ≤ λTT ∗, then

〈1
λ
KK∗f, f〉 ≤ 〈TT ∗f, f〉,

so,
1

λ
‖K∗f‖2 ≤ ‖T ∗f‖2.

Note {Λw}w∈Ω is a continuous g−bessel sequence and suppose that {θw}w∈Ω is the con-
tinuous g−orthonormal basis for H with respect to {Hw}w∈Ω, then by Lemma 1.7, we
have

‖T ∗f‖2 =

∫
w∈Ω

‖θwT ∗f‖2dµ(w) =

∫
w∈Ω

‖Λwf‖2dµ(w),

hence,
1

λ
‖K∗f‖2 ≤

∫
w∈Ω

‖Λwf‖2dµ(w),

so, the continuous g−bessel sequence is a continuous K − g−frame. �

Theorem 4.3. Let K ∈ L(H) and {Λw}w∈Ω be a continuous g−bessel sequence for H with
respect to {Hw}w∈Ω. The associated continuous g−preframe operator with {Λw}w∈Ω is T and
{θw}w∈Ω is the continuous g−orthonormal basis for H with respect to {Hw}w∈Ω. Then T is a
co-isometry if and only if {ΛwK

∗}w∈Ω is a continuous Parseval K − g−frame.

Proof. From the definition of continuous g−orthonormal basis, we have∫
w∈Ω

‖ΛwK
∗f‖2dµ(w) =

∫
w∈Ω

‖θwT ∗K∗f‖2dµ(w) = ‖T ∗K∗f‖2, ∀f ∈ H.

Which implies the conclusion is obvious. �
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Theorem 4.4. Let K ∈ L(H) and {θw}w∈Ω be a continuous g−orthonormal basis for H with
respect to {Hw}w∈Ω. {Λw}w∈Ω is a continuousK−g−frame forH with respect to {Hw}w∈Ω with
the continuous g−preframe operator T . U is the continuous g−preframe operator of continuous
g−bessel sequence {Γw}w∈Ω. If U is invertible and U−1 is the right inverse of T , then {Γw}w∈Ω

is a continuous K − g−frame.

Proof. {Λw}w∈Ω is a continuous K − g−frame for H with respect to {Hw}w∈Ω, then there
exists a constant A > 0 such that

A‖K∗f‖2 ≤
∫
w∈Ω

‖Λwf‖2dµ(w),

and we have {θw}w∈Ω is a continuous g−orthonormal basis for H with respect to
{Hw}w∈Ω, so ∫

w∈Ω

‖Λwf‖2dµ(w) =

∫
w∈Ω

‖θwT ∗f‖2dµ(w), ∀f ∈ H,

Since U is invertible and TU−1 = IH , we obtain∫
w∈Ω

‖Λwf‖2dµ(w) =

∫
w∈Ω

‖θwU∗(U∗)−1T ∗f‖2dµ(w) =

∫
w∈Ω

‖θwU∗f‖2dµ(w), ∀f ∈ H,

we have U is the continuous g−preframe operator of continuous g−bessel sequence
{Γw}w∈Ω, then

A‖K∗f‖2 ≤
∫
w∈Ω

‖Γwf‖2dµ(w), ∀f ∈ H.

�

Theorem 4.5. Let K ∈ L(H) and {θw}w∈Ω be a continuous g−orthonormal basis for H with
respect to {Hw}w∈Ω. {Λw}w∈Ω is a continuous K − g−frame for H with respect {Hw}w∈Ω with
the continuous g−preframe operator T . U is the continuous g−preframe operator of continuous
g−bessel sequence {Γw}w∈Ω. Then {Γw}w∈Ω is the dual continuous K − g−bessel sequence of
{Λw}w∈Ω if and only if K = TU∗.

Proof. Assume that {Γw}w∈Ω is the dual continuous K − g−bessel sequence of {Λw}w∈Ω,
then for each f ∈ H

Kf =

∫
w∈Ω

Λ∗wΓwfdµ(w).

Since {θw}w∈Ω is the continuous g−orthonormal basis forH , then by Lemma 1.7, we have
for all f ∈ H

Kf =

∫
w∈Ω

(θwT
∗)∗(θwU

∗)fdµ(w)

= T

∫
w∈Ω

θ∗wθwU
∗fdµ(w)

= TU∗f,

so, K = TU∗.
Conversely, suppose that K = TU∗. We have

Λw = θwT
∗, Γw = θwU

∗, ∀w ∈ Ω.
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Hence, for each f ∈ H∫
w∈Ω

Λ∗wΓwfdµ(w) =

∫
w∈Ω

(θwT
∗)∗(θwU

∗)fdµ(w)

= T

∫
w∈Ω

θ∗wθwU
∗fdµ(w)

= TU∗f

= Kf.

This shows that {Γw}w∈Ω is the dual continuousK−g−bessel sequence of {Λw}w∈Ω. �

Theorem 4.6. Let K ∈ L(H). {Γw}w∈Ω is the dual continuous K − g−bessel sequence of
{Λw}w∈Ω. Suppose thatV ∈ L(H), ifV is a co-isometry then {V ∗Γw}w∈Ω is the dual continuous
K − g−bessel sequence of {V ∗Λw}w∈Ω.

Proof. Since V is a co-isometry, then V V ∗ = IH . So, for each f ∈ H∫
w∈Ω

(V ∗Λw)∗(V ∗Γw)fdµ(w) =

∫
w∈Ω

Λ∗wV V
∗Γwfdµ(w)

=

∫
w∈Ω

Λ∗wΓwfdµ(w)

= Kf.

�

Theorem 4.7. LetK ∈ L(H) be with closed range and {Λw}w∈Ω is a continuousK−g−frame
for H with respect to {Hw}w∈Ω. Then {ΛwPS(R(K))(S

−1
Λ )∗K}w∈Ω is the dual continuous K −

g−bessel sequence of {ΛwPR(K)}w∈Ω.

Proof. It is easy to check that {ΛwPS(R(K))(S
−1
Λ )∗K}w∈Ω is continuous g−bessel sequence.

Since SΛ is self-adjoint and invertible, we have for each f ∈ H

Kf = (S−1
Λ SΛ)∗Kf

= S∗Λ(S−1
Λ )∗Kf

= S∗ΛPS(R(K))(S
−1
Λ )∗Kf

= PR(K)S
∗
ΛPS(R(K))(S

−1
Λ )∗Kf

= PR(K)

∫
w∈Ω

Λ∗wΛwPS(R(K))(S
−1
Λ )∗Kfdµ(w)

=

∫
w∈Ω

(ΛwPR(K))
∗(ΛwPS(R(K))(S

−1
Λ )∗K)fdµ(w).

�

Theorem 4.8. LetK ∈ L(H) be with closed range and {Λw}w∈Ω is a continuousK−g−frame
for H with respect to {Hw}w∈Ω. Then {φw}w∈Ω is the dual continuous K − g−bessel sequence
of {ΛwPR(K)}w∈Ω if and only if ∀w ∈ Ω, φw = Γw + θwψ, where Γw = ΛwPS(R(K))(S

−1
Λ )∗K

and {θw}w∈Ω is the continuous g−orthonormal basis ofH with respect to {Hw}w∈Ω, ψ ∈ L(H)

and T is the continuous g−preframe operator of {Λw}w∈Ω such that PR(K)Tψ = 0.
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Proof. (⇐=) Define the operator ψ = U∗ − T ∗PS(R(K))(S
−1
Λ )∗K, where U ∈ L(H) is the

continuous g−preframe operator associated with {φw}w∈Ω, then ψ ∈ L(H). By Theorem
4.5 and Lemma 1.9, we know TU∗ = K and S = TT ∗, hence

PR(K)Tψf = PR(K)TU
∗f − PR(K)TT

∗PS(R(K))(S
−1
Λ )∗Kf

= Kf − (SΛ)∗(S−1
Λ )∗Kf

= 0

Moreover,

θwψ = θwU
∗ − θwT ∗PS(R(K))(S

−1
Λ )∗K = φw − ΛwPS(R(K))(S

−1
Λ )∗K,

hence
Γw + θwψ = ΛwPS(R(K))(S

−1
Λ )∗K + φw − ΛwPS(R(K))(S

−1
Λ )∗K = φw.

(=⇒) Assume that ψ ∈ L(H) and PR(K)Tψ = 0, then it is obvious that {φw}w∈Ω =

{Γw + θwψ}w∈Ω is a continuous g−bessel sequence. So,∫
w∈Ω

(ΛwPR(K))
∗φwfdµ(w) =

∫
w∈Ω

(ΛwPR(K))
∗Γwfdµ(w) +

∫
w∈Ω

(ΛwPR(K))
∗θwψfdµ(w)

= Kf + PR(K)

∫
w∈Ω

Tθ∗wθwψfdµ(w)

= Kf + PR(K)Tψf

= Kf,

we conclude that {φw}w∈Ω is the dual continuous K − g−bessel sequence of
{ΛwPR(K)}w∈Ω. �

Theorem 4.9. Let K ∈ L(H) and {Γw}w∈Ω be the dual continuous K − g−bessel sequence
of {Λw}w∈Ω whose continuous g−preframe operator T . Suppose the continuous g−preframe
operator of the continuous g−bessel sequence {φw}w∈Ω is U , then TU∗ = 0 if and only if {Γw +

φw}w∈Ω is the dual continuous K − g−bessel sequence of {Λw}w∈Ω.

Proof. Assume that TU∗ = 0 and {θw}w∈Ω is the continuous g−orthonormal basis for H
with respect to {Hw}w∈Ω, then∫

w∈Ω

Λ∗wφwfdµ(w) =

∫
w∈Ω

(θwT
∗)∗(θwU

∗)fdµ(w)

= T

∫
w∈Ω

θ∗wθwU
∗f

= TU∗f

= 0.

Hence, for each f ∈ H ,∫
w∈Ω

Λ∗w(Γw + φw)fdµ(w) =

∫
w∈Ω

Λ∗wΓwfdµ(w) = Kf.

For the other implication, just put the above calculation process contrary again and we
can get the result. �
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Theorem 4.10. let K ∈ L(H). {Γw}w∈Ω and {φw}w∈Ω are both the dual continuous K −
g−bessel sequences of {Λw}w∈Ω, respectively. Operators V1 and V2 are two linear operators on
H , if V1 + V2 = IH then {ΓwV1 + φwV2}w∈Ω is the dual continuous K − g−bessel sequence of
{Λw}w∈Ω.

Proof. we have for each f ∈ H ,∫
w∈Ω

Λ∗w(ΓwV1 + φwV2)fdµ(w) =

∫
w∈Ω

Λ∗wΓwV1fdµ(w) +

∫
w∈Ω

Λ∗wφwV2fdµ(w)

= KV1 +KV2f

= K(V1 + V2)f

= Kf.

�

Corollary 4.11. Let K ∈ L(H) and it is invertible. {Γw}w∈Ω and {φw}w∈Ω are both the dual
continuous K − g−bessel sequences of {Λw}w∈Ω, respectively. Operators V1 and V2 are two
linear operators on H , then {ΓwV1 + φwV2}w∈Ω is the dual continuous K − g−bessel sequence
of {Λw}w∈Ω if and only if V1 + V2 = IH .

Proof. (⇐=) Suppose that V1+V2 = IH , then by Theorem 4.10, we have {ΓwV1+φwV2}w∈Ω

is the dual continuous K − g−bessel sequence of {Λw}w∈Ω.
(=⇒) Assume that {ΓwV1 + φwV2}w∈Ω is the dual continuous K − g−bessel sequence

of {Λw}w∈Ω, so for each f ∈ H ,

Kf =

∫
w∈Ω

Λ∗w(ΓwV1 + φwV2)fdµ(w)

=

∫
w∈Ω

Λ∗wΓwV1fdµ(w) +

∫
w∈Ω

Λ∗wφwV2fdµ(w)

= KV1f +KV2f

= K(V1 + V2)f.

Hence,

K = K(V1 + V2),

Since K is invertible and we conclude that V1 + V2 = IH . �

Theorem 4.12. Let K ∈ L(H) anve closed range and {Γw}w∈Ω be the dual continuous K −
g−bessel sequence of {Λw}w∈Ω. Suppose that α is a complex number and R(K) ⊂ S(R(K)),
then the sequence {∆w}w∈Ω defined by

∆w = αΓw + (1− α)ΛwS
−1
Λ K (4.1)

is a dual continuous K − g−bessel sequance of {Λw}w∈Ω for H with respect to {Hw}w∈Ω.

Proof. Since {Λw}w∈Ω and {Γw}w∈Ω are both continuous g−bessel sequences, then it is
easy to check the sequence {∆w}w∈Ω is also a continuous g−bessel sequence. Hence, for
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each f ∈ H ,∫
w∈Ω

Λ∗w∆wfdµ(w) =

∫
w∈Ω

Λ∗wαΓwfdµ(w) +

∫
w∈Ω

Λ∗w(1− α)ΛwS
−1
Λ Kfdµ(w)

= αKf + (1− α)

∫
w∈Ω

Λ∗wΛwS
−1
Λ Kfdµ(w)

= αKf + (1− α)Kf

= Kf.

�
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