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Abstract. In this present paper we introduce the class of C∗−algebra valued extended
hexagonal b- asymmetric metric spaces and establish certain fixed point theorem. Non-
trivial examples are further provided to support the hypotheses of our results.

1. Introduction

Fixed point theory is an important tool for solving existence of solutions of many non-
linear problems in various branches of science and has been studied in differents spaces.

Ma et al. [13] introduced the notion of C∗−algebra valued metric spaces by replacing
the set of real numbers by the set of all positive elements of a unital C∗− algebra.

In 2015, Ma and Jiang [14] introduced a concept ofC∗−algebra valued b−metric spaces
which generalize an ordinary C∗−algebra valued space and give some fixed point theo-
rems.

In 2017 Kamran et al [7] initiated the concept of extented b−metric spaces.

Definition 1.1. [7] Let X be a non empty set and E : X × X → [1,∞[. A function
d : X ×X → [0,∞[ is called an extended b−metric if it satisfies:

(1) d(x, y) = 0⇔ x = y ∀x, y ∈ X .
(2) d(x, y) = d(y, x), ∀x, y ∈ X .
(3) d(x, y) ≤ E(x, y)[d(x, z) + d(z, y)] ∀x, y, z ∈ X .

(X, d) is called an extended b−metric space.

The notion of extended hexagonal b− metric spaces was introduced by Kalpana et
al. [5].
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Definition 1.2. [5] Let X be a non empty set and E : X × X → [1,∞[. A function
d : X ×X → [0,∞[ is called an extended hexagonal b−metric if it satisfies:

(1) d(x, y) = 0⇔ x = y ∀x, y ∈ X .
(2) d(x, y) = d(y, x); ∀x, y ∈ X .
(3) d(x, y) ≤ E(x, y)[d(x, u) + d(u, v) + d(v, w) + d(w, z) + d(z, y)] ∀x, y, u, v, w, z ∈ X

and x 6= u, u 6= v, v 6= w,w 6= z, z 6= y.
(X, d) is called an extended hexagonal b−metric space.

2. preliminaries

Throughout this paper, we denote A by an unital (i.e ,unity element I) C∗-algebra with
linear involution ∗, such that for all x, y ∈ A,

(xy)∗ = y∗x∗,and x∗∗ = x.
We call an element x ∈ A a positive element, denote it by x � θ.

If x ∈ Ah = {x ∈ A : x = x∗} and σ(x) ⊂ R+, where σ(x) is the spectrum of x. Using
positive element, we can define a partial ordering � on Ah as follows :

x � y if and only if y − x � θ,
where θ means the zero element in A.

We denote the set {x ∈ A : x � θ} by A+ and |x| = (x∗x)
1
2 , A′ will denote the set

{a ∈ A+; ab = ba,∀b ∈ A} and A′
I = {a ∈ A; ab = ba,∀b ∈ A and a � I}.

Lemma 2.1. [15] Suppose that A is a unital C∗-algebra with a unit I.
(1) For any x ∈ A+ we have x � I ⇐⇒ ‖x‖ ≤ 1.

(2) If a ∈ A+ with ‖a‖ < 1

2
then I − a is invertible and ‖a(1− a)−1‖ < 1.

(3) Suppose that a, b ∈ A+ and ab = ba, then ab � θ.
(4) Let a ∈ A′ = {a ∈ A; ab = ba ∀b ∈ A}, if b, c ∈ A, with b � c � θ, and I − a ∈ A′+ is

invertible operator, then (I − a)−1b � (I − a)−1c.

Recently, Asim et al. [3] developed a concept ofC∗−algebra valued extended b−metric
spaces.

Definition 2.2. LetX be a non empty set andE : X×X → A′
I . A function d : X×X → A

is called a C∗−algebra valued extended b−metric spaces on X if it satisfies:
(1) d(x, y) = θ ⇔ x = y ∀x, y ∈ X and d(x, y) � θ.
(2) d(x, y) = d(y, x) ∀x, y ∈ X .
(3) d(x, y) � E(x, y)[d(x, z) + d(z, y)] ∀x, y, z ∈ X .

(X,A, d) is called a C∗−algebra valued extended b−metric space.

Later Kalpana et al. [6] defined in the following C∗−algebra valued hexagonal b−met-
ric spaces.

Definition 2.3. Let X be a non empty set and b ∈ A′
I such that b � I .

Suppose the mapping d : X ×X → A if it satisfies:
(1) d(x, y) � θ and d(x, y) = θ ⇔ x = y ∀x, y ∈ X .
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(2) d(x, y) = d(y, x); ∀x, y ∈ X .
(3) d(x, y) � b[d(x, u) + d(u, v) + d(v, w) + d(w, z) + d(z, y)] ∀x, y, u, v, w, z ∈ X and

x 6= u, u 6= v, v 6= w,w 6= z, z 6= y.

d is called a C∗−algebra valued hexagonal b−metric and (X,A, d) is called a C∗−algebra
valued hexagonal b−metric space.

The definition ofC∗−algebra valued extended hexagonal b−metric space was defined
in the following way in [5].

Definition 2.4. Let X be a non empty set and E : X ×X → A′
I .

Suppose the mapping d : X ×X → A if it satisfies:

1) d(x, y) � θ and d(x, y) = θ ⇔ x = y ; ∀x, y ∈ X .
2) d(x, y) = d(y, x); ∀x, y ∈ X .
3) d(x, y) � E(x, y)[d(x, u) + d(u, v) + d(v, w) + d(w, z) + d(z, y)] ∀x, y, u, v, w, z ∈ X

and x 6= u, u 6= v, v 6= w,w 6= z, z 6= y.

(X,A, d) is called a C∗−algebra valued extended hexagonal b−metric space.

Many generalizations of the concept of metric spaces are defined and some fixed point
theorems were proved in these spaces. In particular, asymmetric metric space were in-
troduce by Wilson [17] as metric spaces, but without the requirement that the asymmet-
ric metric d has to satisfy d(x, y) = d(y, x). For further investigations on the concept of
asymmetric metric, the readers can view [2, 8–12, 16].

Influenced by all the above concepts, we introduce the class of C∗−algebra valued
hexagonal b− asymmetric metric spaces and C∗−algebra valued extended hexagonal b−
asymmetric metric space and establish certain fixed point theorems.

3. Main result

Definition 3.1. Let X be a non empty set and b ∈ A′
I such that b � I .

Suppose the mapping d : X ×X → A if it satisfies:

(1) d(x, y) � θ and d(x, y) = θ ⇔ x = y ∀x, y ∈ X .
(2) d(x, y) � b[d(x, u) + d(u, v) + d(v, w) + d(w, z) + d(z, y)] ∀x, y, u, v, w, z ∈ X and

x 6= u, u 6= v, v 6= w,w 6= z, z 6= y.

d is called a C∗−algebra valued hexagonal b−metric and (X,A, d) is called a C∗−algebra
valued hexagonal b−asymmetric metric space.

Example 3.2. Let A = R2 a C∗−algebra with the partial order

(α, β) � (α′, β′)⇐ α ≤ α′ and β ≤ β′

and X = {α, β, γ, η, δ, λ} with α, β, γ, η, δ, λ ∈ R+,
we define

d : X ×X → A
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by

d(α, α) = d(β, β) = d(γ, γ) = d(η, η) = d(δ, δ) = d(λ, λ) = (0, 0)

d(α, β) = d(β, α) = d(α, γ) = d(γ, α) = d(α, η) = d(η, α) = d(α, δ)

= d(δ, α) = d(α, λ) = d(λ, α) = (4, 4)

d(β, γ) = d(γ, β) = d(β, η) = d(η, β) = d(β, δ) = d(δ, β) = d(β, λ) = (5, 5)

d(γ, η) = d(η, γ) = d(γ, δ) = d(δ, γ) = d(δ, λ) = d(λ, δ) = (1, 1)

d(η, δ) = d(δ, η) = d(η, λ) = d(λ, η) = (2, 2)

d(δ, λ) = (6, 6) and d(λ, δ) = (7, 7).

It is easy to verify that d is a C∗−algebra valued hexagonal b−asymmetric metric space.

Definition 3.3. Let X be a non empty set and E : X ×X → A′
I .

Suppose the mapping d : X ×X → A if it satisfies:

(1) d(x, y) � θ and d(x, y) = θ ⇔ x = y ∀x, y ∈ X .
(2) d(x, y) � E(x, y)[d(x, u) + d(u, v) + d(v, w) + d(w, z) + d(z, y)] ∀x, y, u, v, w, z ∈ X

and x 6= u, u 6= v, v 6= w,w 6= z, z 6= y.

(X,A, d) is called a C∗−algebra valued extended hexagonal b− asymmetric metric space.

Example 3.4. In the example 3.2 we consider E : X ×X → A′
I defined by

E(x, y) = (x+ y, x+ y), ∀x, y ∈ X

we have that (X,A, d) is a C∗−algebra valued extended hexagonal b− asymmetric metric
space.

Definition 3.5. Let (X,A, d) is aC∗−algebra valued extended hexagonal b− asymmetric
metric space. A sequence {xn} in X is said to be:

(i) {xn} b−forward ( respectively b− backward) converges to x ∈ X with respect to
A if for all ε � θ, ∃Nε ∈ N such that

d(x, xn) � ε, (respectively d(xn, x) � ε).

(ii) {xn} converges to x if limn→∞d(x, xn) = limn→∞d(xn, x) = θ.
(iii) {xn} is b−forward Cauchy sequence respect with A if ∀ε � θ, ∃Nε ∈ N such that

d(xm, xn) � ε ∀m > n ≥ Nε.
(iv) {xn} is b−backward Cauchy sequence respect with A if ∀ε � θ, ∃Nε ∈ N such

that d(xm, xn) � ε ∀n > m ≥ Nε.

Definition 3.6. Let (X,A, d) is aC∗−algebra valued extended hexagonal b− asymmetric
metric space. X is said to be b−forward ( respectively b− backward) complete if every
b−forward ( respectively b− backward) Cauchy sequence {xn} in X , converges to x ∈ X .

Definition 3.7. Let (X,A, d) is aC∗−algebra valued extended hexagonal b− asymmetric
metric space. X is said to be complete if X is b−forward and b− backward complete.
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Lemma 3.8. Let (X,A, d) a C∗-algebra valued extended hexagonal b− asymmetric metric
space. and {xn}n be a forward (or backward) Cauchy sequence with pairwise disjoint elements
in X. If {xn}n forward converges to x ∈ X and backward converges to y ∈ X , then x = y.

Proof. Let ε � θ. First assume that {xn}n is a forward Cauchy sequence, so there exists
n0 ∈ N such that ‖d(xn, xm)‖ ≤ ε

5‖E(x,y)‖ for all m ≥ n ≥ n0. Since {xn}nforward con-
verges to x so there exists n1 ∈ N such that ‖d(xn, x)‖ ≤ ε

5‖E(x,y)‖ for all n ≥ n1. Also
{xn}n forward converges to y so there exists n2 ∈ N such that‖d(y, xn)‖ ≤ ε

5‖E(x,y)‖ for
all n ≥ n2. Then for all N ≥ max{n0, n1, n2},

d(x, y) � E(x, y)[d(x, xn) + d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3) + d(xn+3, y)]

⇒ d(x, y) ≤ ‖E(x, y)‖‖[d(x, xn) + d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3)

+ d(xn+3, y)]‖ ≤ 5‖E(x, y)‖ ε

5‖E(x, y)‖
= ε.

As ε � θ was arbitrary, we deduce that d(x, y) = θ, which implies x = y.
When {xn}n is a backward Cauchy sequence, the proof is similar to an earlier state. �

Theorem 3.9. Let (X,A, d) is a completeC∗−algebra valued hexagonal b− asymmetric metric
space and suppose T : X → X be a mapping satisfying

d(Tx, Ty) � λ∗d(x, y)λ ; ∀x, y ∈ X

with λ ∈ A and ‖λ‖ < 1.
Then T has a unique fixed point in X .

Proof. Let x0 ∈ X and define a sequence {xn} by

xn+1 = Txn = T n+1x0, ∀n ∈ N

d(xn+1, xn) = d(Txn, Txn−1) � λ∗d(xn, xn−1)λ

� (λ∗)2d(xn−1, xn−2)λ
2

.

.

.

� (λ∗)nd(x1, x0)λ
n,

then d(xn+1, xn)→ θ as n→∞.
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For m ≥ 1 and r ≥ 1, it follows that

d(xm+r, xm) � b[d(xm+r, xm+r−1) + d(xm+r−1, xm+r−2) + d(xm+r−2, xm+r−3)+

d(xm+r−3, xm+r−4) + d(xm+r−4, xm)]

� b[d(xm+r, xm+r−1) + d(xm+r−1, xm+r−2) + d(xm+r−2, xm+r−3)+

d(xm+r−3, xm+r−4)]+

b2[d(xm+r−4, xm+r−5) + d(xm+r−5, xm+r−6) + d(xm+r−6, xm+r−7)+

d(xm+r−7, xm+r−8)]+

...+ br−1[d(xm+5, xm+4) + d(xm+4, xm+3)+

d(xm+3, xm+2) + d(xm+2, xm+1) + d(xm+1, xm)]

� b
4∑

k=1

(λ∗)m+r−kd(x1, x0)λ
m+r−k + ...+ br−1

4∑
k=1

(λ∗)m+kd(x1, x0)λ
m+k+

br−1(λ∗)md(x1, x0)λ
m

� (‖b‖
4∑

k=1

‖λ‖2(m+r−k) + ‖d(x1, x0)‖+ ...+ ‖b‖r−1
4∑

k=1

‖λ‖2(m+k))‖d(x1, x0)+

‖br−1‖‖λ‖2m‖d(x1, x0)‖)I → θ as m→∞.

Similary we obtain d(xm, xm+r)→ θ as m→∞.
Consequently, {xn} is b−forward and b− backward Cauchy sequence. By complete-

ness of X , there exists z ∈ X such that limn→∞xn = z.
Now we show that d(z, Tz) = d(Tz, z) = θ.

d(Tz, z) � b[d(Tz, Txn) + d(xn+1, xn+2) + d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, z)]

� b[λ∗d(z, xn)λ+ d(xn+1, xn+2) + d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, z)]

⇔ ‖d(z, Tz)‖ ≤ ‖b‖[‖λ‖2‖d(z, xn)‖+ ‖d(xn+1, xn+2)‖+ ‖d(xn+2, xn+3)‖+

‖d(xn+3, xn+4)‖+ ‖d(xn+4, z)‖]→ θ (n→∞).

Hence Tz = z i.e, z is a fixed point of T .
Unicity:

Let z′ 6= z be another fixed point of T .
We have

0 ≤ ‖d(z, z′)‖ ≤ ‖λ∗d(z, z′)λ‖

≤ ‖λ‖2‖d(z, z′)‖.

Which is a contradiction (‖λ‖2 ≥ 1), hence the fixed point z is unique. �

Example 3.10. Let X = [0, 4] and A = R2.
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Define d : X ×X → R2 by

d(x, y) =

{
(|x− y|6, 0) if x ≥ y

(0, |x− y|6) if x < y.

It is easy to verify that (X,A, d) is a complete C∗−algebra valued hexagonal b− asym-
metric metric space. and Tx =

x

3
, we have

d(Tx, Ty) =


((
|x− y|

3
)6, 0) if x ≥ y

(0, (
|x− y|

3
)6) if x < y.

Then d(Tx, Ty) � 1

3
IR2d(x, y)

1

3
IR2 where ‖1

3
IR2‖ < 1 , the conditions of Theorem 3.9

are fullfilled. T has a unique fixed point x = 0.

Theorem 3.11. Let (X,A, d) is a completeC∗−algebra valued hexagonal b− asymmetric met-
ric space and suppose T : X → X be a mapping satisfying

d(Tx, Ty) � λ[d(x, Tx) + d(y, Ty)] ; ∀x, y ∈ X

with λ ∈ A and ‖λ‖ < 1

2
.

Then T has a unique fixed point in X .

Proof. Let x0 ∈ X and define a sequence {xn} by

xn+1 = Txn = T n+1x0, ∀n ∈ N

d(xn, xn+1) = d(Txn−1, Txn) � λ[d(xn−1, xn) + d(xn, xn+1)]

⇒ (I − λ)d(xn, xn+1) � λd(xn−1, xn)

.

.

.

� βnd(x0, x1),

Let β = (I − λ)−1(λ),
since ‖λ‖ < 1

2
we have ‖β‖ < 1.

Then

(I − λ)d(xn, xn+1) � λd(xn−1, xn)

.

.

.

� (β)nd(x0, x1),

then d(xn, xn+1)→ θ as n→∞.
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For m ≥ 1 and r ≥ 1, it follows that

d(xm, xm+r) � b[d(xm, xm+1) + d(xm+1, xm+2) + d(xm+2, xm+3)+

d(xm+3, xm+4) + d(xm+4, xm)]

� b[d(xm, xm+1) + d(xm+1, xm+2) + d(xm+2, xm+3)+

d(xm+3, xm+4)]

b2[d(xm+4, xm+5) + d(xm+5, xm+6) + d(xm+6, xm+7)+

d(xm+7, xm+8)]+

...+ br−1[d(xm+r−5, xm+r−4) + d(xm+r−4, xm+r−3)+

d(xm+r−3, xm+r−2) + d(xm+r−2, xm+r−1) + d(xm+r−1, xm+r)]

� b
4∑

k=1

(β)m+r−kd(x0, x1) + ...+ br−1
4∑

k=1

(β)m+kd(x0, x1)+

br−1βmd(x0, x1)

� (‖b‖
4∑

k=1

‖β‖2(m+r−k) + ‖d(x0, x1)‖+ ...+ ‖b‖r−1
4∑

k=1

‖β‖2(m+k))‖d(x0, x1)+

‖br−1‖‖β‖2m‖d(x0, x1)‖)I → θ as m→∞.

Similary we obtain d(xm+r, xm)→ θ as m→∞.
Consequently, {xn} is b−forward and b− backward Cauchy sequence. By complete-

ness of X , there exists z ∈ X such that limn→∞xn = z.
Now we show that d(z, Tz) = d(Tz, z) = θ.

d(Tz, z) � b[d(Tz, Txn) + d(xn+1, xn+2) + d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, z)]

� b[λ(d(z, Tz) + d(xn, Txn)) + d(xn+1, xn+2) + d(xn+2, xn+3) + d(xn+3, xn+4)

+ d(xn+4, z)]

⇔ ‖d(z, Tz)‖ ≤ ‖b‖[‖λ‖ ‖d(z, xn)‖+ ‖λ‖ ‖d(xn, xn+1) + ‖d(xn+1, xn+2)‖

+ ‖d(xn+2, xn+3)‖+ ‖d(xn+3, xn+4)‖+ ‖d(xn+4, z)‖]→ θ (n→∞).

Hence Tz = z i.e, z is a fixed point of T .
Unicity:

Let z′ 6= z be another fixed point of T .
We have

d(z, z′) ≤ λ(d(z, Tz) + d(z′, T z′))

= λ(d(z, z) + d(z′, z′)) = θ

which is a contradiction (d(z, z′) = θ ⇒ z = z′), hence the fixed point z is unique. �

Theorem 3.12. Let (X,A, d) is a complete C∗−algebra valued extended hexagonal b− asym-
metric metric space and suppose T : X → X be a mapping satisfying

d(Tx, Ty) � λ∗E(x, y)d(x, y)λ ; ∀x, y ∈ X
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with λ ∈ A , ‖λ‖ < 1 and supm≥1limn→∞‖E(xn+1, xn)‖‖E(xn, xm)‖ <
1

‖λ‖8
,

and limn,m→∞‖E(xn, xm)‖ <
1

‖λ‖2
.

Then T has a unique fixed point in X .

Proof. Let x0 ∈ X and define a sequence {xn} by

xn+1 = Txn = T n+1x0, ∀n ∈ N

d(xn+1, xn) = d(Txn, Txn−1) � λ∗E(xn, xn−1)d(xn, xn−1)λ

� (λ∗)2E(xn, xn−1)E(xn−1, xn−2)d(xn−1, xn−2)λ
2

.

.

.

� (λ∗)n
n∏

k=1

E(xk, xk−1)d(x1, x0)λ
n

then d(xn+1, xn)→ θ as n→∞.
For m ≥ 1 and r ≥ 1, it follows that

d(xm+r, xm) � E(xm+r, xm)[d(xm+r, xm+r−1) + d(xm+r−1, xm+r−2) + d(xm+r−2, xm+r−3)+

d(xm+r−3, xm+r−4) + d(xm+r−4, xm)]

� E(xm+r, xm)[d(xm+r, xm+r−1) + d(xm+r−1, xm+r−2) + d(xm+r−2, xm+r−3)+

d(xm+r−3, xm+r−4)]+

E(xm+r, xm)E(xm+r−4, xm)[d(xm+r−4, xm+r−5) + d(xm+r−5, xm+r−6)

+ d(xm+r−6, xm+r−7) + d(xm+r−7, xm+r−8)]+

...+ E(xm+r, xm)E(xm+r−4, xm)...E(xm+1, xm)[d(xm+5, xm+4) + d(xm+4, xm+3)

+ d(xm+3, xm+2) + d(xm+2, xm+1) + d(xm+1, xm)]

=
m+r∑
k=m

k∏
j=m+1

E(xj, xm))[d(xk+4, xk+3) + d(xk+3, xk+2)

+ d(xk+2, xk+1) + d(xk+1, xk)] +
m+r∏

j=m+1

E(xj, xm))d(xm+1, xm)

�
m+r∑
k=m

k∏
j=m+1

E(xj, xm))[(λ
∗)k+3

n∏
k=1

E(xk, xk−1)d(x1, x0)λ
k+3

+ (λ∗)k+2

n∏
k=1

E(xk, xk−1)d(x1, x0)λ
k+2 + (λ∗)k+1

n∏
k=1

E(xk, xk−1)d(x1, x0)λ
k+1
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+ (λ∗)k
n∏

k=1

E(xk, xk−1)d(x1, x0)λ
k] +

m+r∏
j=m+1

E(xj, xm))(λ
∗)m

n∏
k=1

E(xk, xk−1)d(x1, x0)λ
m

� ‖d(x1, x0)‖[
m+r∑
k=m

k∏
j=m+1

‖E(xj, xm)‖‖
n∏

k=1

E(xk, xk−1)‖‖λ‖2(k+3)

+ ‖λ‖2(k+2)‖
n∏

k=1

E(xk, xk−1)‖+ ‖λ∗‖2(k+1)‖
n∏

k=1

E(xk, xk−1)‖+

‖λ∗‖2k‖
n∏

k=1

E(xk, xk−1)‖]I + ‖d(x1, x0)‖‖
m+r∏

j=m+1

E(xj, xm))‖‖λ‖2m‖
n∏

k=1

E(xk, xk−1)‖]I

→ θ as m→∞.

Similary we obtain d(xm, xm+r)→ θ as m→∞.
Consequently, {xn} is b−forward and b− backward Cauchy sequence. By complete-

ness of X , there exists z ∈ X such that limn→∞xn = z.
Now we show that d(z, Tz) = d(Tz, z) = θ

d(Tz, z)

� E(Tz, z)[d(Tz, Txn) + d(xn+1, xn+2) + d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, z)]

� E(Tz, z)[λ∗d(z, xn)λ+ d(xn+1, xn+2) + d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, z)]

⇔ ‖d(z, Tz)‖ ≤ ‖E(Tz, z)‖[‖λ‖2‖d(z, xn)‖+ ‖d(xn+1, xn+2)‖+ ‖d(xn+2, xn+3)‖+

‖d(xn+3, xn+4)‖+ ‖d(xn+4, z)‖]→ θ (n→∞).

Hence Tz = z i.e, z is a fixed point of T .
Unicity:

Let z′ 6= z be another fixed point of T .
We have

0 ≤ ‖d(z, z′)‖ ≤ ‖λ∗E(z, z′)d(z, z′)λ‖

≤ ‖λ‖2‖E(z, z′)‖‖d(z, z′)‖

< ‖λ‖2 1

‖λ‖2
‖d(z, z′)‖

< ‖d(z, z′)‖,

which is a contradiction, hence the fixed point z is unique. �

Example 3.13. Consider T : X → X defined by Tx =
x

3
in the Example 3.10 and

E : X ×X → A′
I defined by

E(x, y) = (x+ y, x+ y) ∀x, y ∈ X,

we have

d(Tx, Ty) =


((
|x− y|

3
)6, 0) if x ≥ y.

(0, (
|x− y|

3
)6) if x < y.
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With
d(Tx, Ty) � 1

3
IR2d(x, y)

1

3
IR2 , ‖1

4
IR2‖ < 1 and 4 > 1

and
d(Tx, Ty) � 1

3
IR2(x+ y, x+ y)d(x, y)

1

3
IR2

Then T has a unique fixed point.

Theorem 3.14. Let (X,A, d) is a complete C∗−algebra valued extended hexagonal b− asym-
metric metric space and suppose T : X → X be a mapping satisfying

d(Tx, Ty) � λ∗kd(x, y)λ ; ∀x, y ∈ X

with λ ∈ A , k ∈ A′I and ‖λ‖ < 1, ‖k‖ > 1.
Then T has a unique fixed point in X .

Proof. If we put E(x, y) = k in Theorem 3.12 we obtain the result. �

Example 3.15. Let A = M2(R) of all 2 × 2 matrices with the usual addition ,scalar
multiplication and multiplication.

Define partial ordering on A as

(
a1 a2
a3 a4

)
�

(
b1 b2
b3 b4

)
⇔ ai ≥ bi

for i = 1, 2, 3, 4.

For any A ∈ A we define its norm as, ‖

(
a1 a2
a3 a4

)
‖ =

[
i=4∑
i=1

|ai|2
] 1

2

.

Let X = A ∪B, where A = {0, 1
2
, 1
3
, 1
4
, 1
5
, 1
6
} and B = [1, 2].

Define d : X ×X → [0,+∞[ as follows:{
d(x, y) = d(y, x) for all x, y ∈ B.

d(x, y) = 0⇔ y = x for all x, y ∈ X.

and 

d

(
1

3
,
1

4

)
= d

(
0,

1

2

)
= d(

1

4
,
1

6
) =

(
0.5 0

0 0.5

)

d

(
1

3
, 0

)
= d

(
1

4
,
1

2

)
= d(

1

5
,
1

2
) =

(
0.4 0

0 0.4

)

d

(
0,

1

3

)
= d

(
1

2
,
1

4

)
=

(
0.45 0

0 0.45

)

d

(
1

3
,
1

2

)
= d

(
1

3
,
1

2

)
=

(
0.8 0

0 0.8

)

d (x, y) =

(
|x− y| 0

0 |x− y|

)
otherwise.

Then (X,A+, d) is a C∗-algebra valued extended hexagonal b− asymmetric metric space

with E(x, y) =

(
2 0

0 2

)
, ‖E(x, y)‖ ≥ 1 .
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Define mapping T : X → X by

T (x) =

{
x

1
2 if x ∈ [1, 2]

1 if x ∈ A.

Evidently, T (x) ∈ X . Consider the following possibilities:
case 1 : x, y ∈ [1, 2] x 6= y. Then

T (x) = x
1
2 , T (y) = y

1
2 , d (Tx, Ty) =

(
x

1
2 − y 1

2 0

0 x
1
2 − y 1

2

)
.

On the other hand

d (x, y) =

(
x− y 0

0 x− y

)
.

it follows that

d(Tx, Ty) � λ∗E(x, y)d(x, y)λ.

Indeed

d(Tx, Ty) =

(
x

1
2 − y 1

2 0

0 x
1
2 − y 1

2

)

�

(
1√
5

0

0 1√
5

)(
2 0

0 2

)(
x− y 0

0 x− y

)(
1√
5

0

0 1√
5

)
= λ∗E(x, y)d(x, y)λ.

where

λ =

(
1√
5

0

0 1√
5

)
with verify

‖λ‖ =
√
2√
5
≤ 1.

case 2 : x ∈ [1, 2], y ∈ A. Then

T (x) = x
1
2 , T (y) = 1

d (Tx, Ty) =

(
x

1
2 − 1 0

0 x
1
2 − 1

)
.

On the other hand

d (x, y) =

(
x− y 0

0 x− y

)
.

It follows that

d(Tx, Ty) � λ∗E(x, y)d(x, y)λ.
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Indeed

d(Tx, Ty) =

(
x

1
2 − 1 0

0 x
1
2 − 1

)

�

(
1√
5

0

0 1√
5

)(
2 0

0 2

)(
x− 1 0

0 x− 1

)(
1√
5

0

0 1√
5

)

�

(
1√
5

0

0 1√
5

)(
2 0

0 2

)(
x− y 0

0 x− y

)(
1√
5

0

0 1√
5

)
= λ∗E(x, y)d(x, y)λ.

Where

λ =

(
1√
5

0

0 1√
5

)

with verify

‖λ‖ =
√
2√
5
≤ 1.

Therefore, T has a unique fixed point z = 1.

Example 3.16. LetX = R+ and A =M2(R+) of all 2×2 matrices with the usual addition

,scalar multiplication and multiplication. Define partial ordering on A as

(
a1 a2
a3 a4

)
�(

b1 b2
b3 b4

)
⇔ ai ≥ bi for i = 1, 2, 3, 4.

For any A ∈ A we define its norm as, ‖

(
a1 a2

a3 a4

)
‖ =

[
i=4∑
i=1

|ai|2
] 1

2

.

Define d : X ×X →M2(R+) as follows:
d (x, y) =

(
ex − ey 0

0 0

)
if x ≥ y

d (x, y) =

(
0 0

0 e−x − e−y

)
if x ≤ y

and E : X ×X →M2(R+), E(x, y) =

(
ex + ey 0

0 0

)
.

Then (X,A+, d) is a C∗-algebra valued extended hexagonal b− asymmetric metric
space.

Define mapping T : X → X by

T (x) =
x

3
.
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Evidently, T (x) ∈ X . Then
d (Tx, Ty) =

(
e

x
3 − e y

3 0

0 0

)
if x ≥ y.

d (Tx, Ty) =

(
0 0

0 e−
x
3 − e− y

3

)
if x ≤ y.

It follows that
d(Tx, Ty) � λ∗E(x, y)d(x, y)λ.

Indeed
d (Tx, Ty) �

(
1
2

0

0 1
2

)(
ex + ey 0

0 0

)(
ex − ey 0

0 0

)(
1
2

0

0 1
2

)
if x ≥ y.

d (Tx, Ty) �

(
1
2

0

0 1
2

)(
ex + ey 0

0 0

)(
0 0

0 e−x − e−y

)(
1
2

0

0 1
2

)
if x ≤ y.

Where

λ =

(
1
2

0

0 1
2

)
with verify

‖λ‖ = 1

2
< 1.

Therefore, T has a unique fixed point z = 0.

Definition 3.17. Let X be a nonempty set, a mapping T is C∗−algebra valued extended
hexagonal b− asymmetric expansion mapping on X , if T : X → X satisfies:

(1) T (X) = X .
(2) d(Tx, Ty) � λ∗E(x, y)d(x, y)λ with λ ∈ A and ‖λ−1‖ < 1.

Theorem 3.18. Let (X,A, d) is a complete C∗−algebra valued extended hexagonal
b−asymmetric metric space and suppose T : X → X be a mapping satisfying

d(Tx, Ty) � λ∗E(x, y)d(x, y)λ ∀x, y ∈ X,

with λ ∈ A, ‖λ‖ < 1.

Then T has a unique fixed point in X .

Proof. Firstly T is injective. We have for any x, y ∈ X with x 6= y if Tx = Ty.

θ = d(Tx, Ty) � λ∗E(x, y)d(x, y)λ

⇒ d(x, y) = θ.

Which is a contradiction. Thus T is injective.
Substitute x, y with T−1x, T−1y, respectively, in

d(Tx, Ty) � λ∗E(x, y)d(x, y)λ

and we get
d(x, y) � λ∗E(T−1x, T−1y)d(T−1x, T−1y)λ.
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Then

(λ−1)∗d(x, y)λ−1 � E(T−1x, T−1y)d(T−1x, T−1y) � d(T−1x, T−1y).

Using Theorem 3.9, there exists a unique x such T−1x = x, which means there has a
unique fixed point x ∈ X such that Tx = x. �

4. Application

As application of theorem on complete C∗−algebra valued extended hexagonal
b−asymmetric metric spaces, existence and uniqueness results for a type of following
integral equation

x(t) =

∫
U

K(t, s, x(t))ds+ f(t) t ∈ U,

where U is a Lebesgue measurable set.
Suppose that

(1) K : U × U × R→ R and f ∈ L∞(U).
(2) There exists a continuous function ϕ : U × U → R and α ∈ (0, 1) such that

|K(t, s, u)−K(t, s, v)| ≤ α|ϕ(t, s)(u− v)| ∀t, s ∈ U and u, v ∈ R.

(3) supt∈U
∫
U
|ϕ(t, s)|ds ≤ 1.

Then, the integral equation has a unique solution z ∈ L∞(U).

Proof. Let X = L∞(U), H = L2(U) and A = B(H).
Define a C∗−algebra valued extended hexagonal b− asymmetric metric

d : X ×X → A

by {
d (x, y) = πx−y if x ≥ y.

d (f, g) = πy−x if y ≤ x.

Where πh(ϕ) : H → H is the multiplication operator defined by πh(ϕ) = h.ϕ for ϕ ∈ H .
Then d is a C∗−algebra valued extended hexagonal b− asymmetric metric.
Define T : X → X by

Tx(t) =

∫
U

K(t, s, x(t))ds+ f(t), t ∈ U.
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If x ≥ y we have, for any h ∈ H

‖d(Tx, Ty)‖ = sup‖h‖=1(πx−yh, h)

= sup‖h‖=1

∫
U

[|
∫
U

K(t, s, x(t))−K(t, s, y(t))ds|]h(t)h(t)dt

≤ sup‖h‖=1

∫
U

[

∫
U

|K(t, s, x(t))−K(t, s, y(t))|ds]|h(t)|2dt

≤ sup‖h‖=1

∫
U

[

∫
U

|αϕ(t, s)(x(s)− y(s))|ds]|h(t)|2dt

≤ αsup‖h‖=1

∫
U

[

∫
U

|ϕ(t, s)|ds]|h(t)|2dt.‖x− y‖∞

≤ αsup‖h‖=1

∫
U

[|ϕ(t, s)|ds].sup‖h‖=1

∫
U

|h(t)|2dt.‖x− y‖∞

≤ α‖x− y‖∞
= α‖d(x, y)‖.

In the same way for x ≥ y.
Then the integral equation has a unique solution z ∈ L∞(U). �
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