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ABSTRACT. In this present paper we introduce the class of C*—algebra valued extended
hexagonal b- asymmetric metric spaces and establish certain fixed point theorem. Non-

trivial examples are further provided to support the hypotheses of our results.

1. INTRODUCTION

Fixed point theory is an important tool for solving existence of solutions of many non-
linear problems in various branches of science and has been studied in differents spaces.

Ma et al. [13] introduced the notion of C*—algebra valued metric spaces by replacing
the set of real numbers by the set of all positive elements of a unital C*— algebra.

In 2015, Ma and Jiang [14] introduced a concept of C* —algebra valued b— metric spaces
which generalize an ordinary C*—algebra valued space and give some fixed point theo-
rems.

In 2017 Kamran et al [7] initiated the concept of extented b— metric spaces.

Definition 1.1. [7] Let X be a non empty set and £ : X x X — [1,00[. A function
d: X x X — [0,00[ is called an extended b— metric if it satisfies:

(1) d(z,y) =0 =y Vr,y € X.

2) d(z,y) = d(y,v),Vz,y € X.

@) d(z,y) < E(z,y)ld(z,2) + d(z,y)] Vz,y,2 € X.
)i

(X, d) is called an extended b— metric space.

3

The notion of extended hexagonal b— metric spaces was introduced by Kalpana et

al. [5].

Date submitted: 2022-11-03.

2020 Mathematics Subject Classification. Primary 47H10; Secondary 54H25.
Key words and phrases. Fixed point, C* —algebra valued extended hexagonal b- asymmetric metric spaces,

contractive mapping.
1


mailto:rossafimohamed@gmail.com

Functional Analysis 2

Definition 1.2. [S5] Let X be a non empty set and F : X x X — [1,00[. A function
d: X x X — [0,00[ is called an extended hexagonal b— metric if it satisfies:
(1) d(z,y) =0 =y Vr,y € X.
(2) d(z,y) = d(y,z); Vo,y € X.
3) d(z,y) < E(x,y)[d(x,u) + d(u,v) + d(v,w) + d(w, z) + d(z,y)] Vo, y,u,v,w,z € X
and x # u,u # v,V # w,w # 2,2 # Y.

(X, d) is called an extended hexagonal b— metric space.

2. PRELIMINARIES

Throughout this paper, we denote A by an unital (i.e ,unity element I) C*-algebra with

linear involution *, such that for all z,y € A,
(ry)* = y*x*and ™ = z.

We call an element x € A a positive element, denote it by x > 6.

Ifr €Ay ={re€A:x=2"}and o(z) C Ry, where o(z) is the spectrum of x. Using
positive element, we can define a partial ordering < on A}, as follows :

x <yifandonlyify —z > 0,

where 0 means the zero element in A.

We denote the set {z € A : z = 0} by A, and |2| = (2*z)2, A’ will denote the set
{ac Ay ;ab=0ba,Vbc Ayand A} = {a € A;ab = ba,¥b € A and a = I}.

Lemma 2.1. [15] Suppose that A is a unital C*-algebra with a unit L.
(1) Forany z € AL we have x < [ <= ||z|| < 1.
(2) If a € Ay with ||a|| < 5 then I — a is invertible and ||a(1 — a)7!|| < 1.
(3) Suppose that a,b € A, and ab = ba, then ab = 6.
4) Leta € A"={ac A;ab=0baVbe A}, ifb,c€ A withb>=c>0,and I —a € A, is
invertible operator, then (I — a)~'b = (I —a) e

Recently, Asim et al. [3] developed a concept of C*—algebra valued extended b— metric
spaces.

Definition 2.2. Let X beanonemptysetand E : X xX — A}. Afunctiond : X xX — A
is called a C*—algebra valued extended b— metric spaces on X if it satisfies:
d(z,y) =0 < x=yVr,y € X and d(z,y) >~ 0.
d(xz,y) =d(y,x) Vx,y € X.
d(z,y) = E(z,y)ld(z, 2) + d(z,y)] Vo, y,z € X,
(X A d) is called a C*—algebra valued extended b— metric space.

Later Kalpana et al. [6] defined in the following C*—algebra valued hexagonal b— met-
ric spaces.

Definition 2.3. Let X be a non empty set and b € A} such that b > I.
Suppose the mapping d : X x X — A if it satisfies:

(1) d(z,y) = fand d(z,y) =0 < x =y Vr,y € X .
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(2) d(z,y) = d(y,z); Vz,y € X.
(3) d(z,y) = bld(x,u) + d(u,v) + d(v,w) + d(w, 2) + d(z,y)] Yo, y,u,v,w,z € X and
TEuuF0,0FwwFE 2,2 F Y.
d is called a C*—algebra valued hexagonal b— metric and (X, A, d) is called a C*—algebra

valued hexagonal b— metric space.

The definition of C*—algebra valued extended hexagonal b— metric space was defined
in the following way in [5].

Definition 2.4. Let X be a non empty setand £ : X x X — A},
Suppose the mapping d : X x X — A if it satisfies:
1) d(z,y) = @and d(x,y) =0 < x =y ;Vr,y € X.
2) d(z,y) =d(y,x);Vr,y € X.
3) d(z,y) 2 E(x,y)[d(x,u) + d(u,v) + d(v,w) + d(w, z) + d(z,y)] Vo, y, u,v,w, z € X
and x # u,u # v,V # w,w # 2,2 £ y.

(X, A, d) is called a C*—algebra valued extended hexagonal b— metric space.

Many generalizations of the concept of metric spaces are defined and some fixed point
theorems were proved in these spaces. In particular, asymmetric metric space were in-
troduce by Wilson [17] as metric spaces, but without the requirement that the asymmet-
ric metric d has to satisfy d(x,y) = d(y, x). For further investigations on the concept of
asymmetric metric, the readers can view [2,8-12,16].

Influenced by all the above concepts, we introduce the class of C*—algebra valued
hexagonal b— asymmetric metric spaces and C*—algebra valued extended hexagonal b—
asymmetric metric space and establish certain fixed point theorems.

3. MAIN RESULT
Definition 3.1. Let X be a non empty set and b € A} such that b > I.
Suppose the mapping d : X x X — A if it satisfies:
(1) d(z,y) = fand d(z,y) =0 < x =y Vz,y € X.
(2) d(z,y) 2 bld(z,u) + d(u,v) + d(v,w) + d(w, z) + d(z,y)] Yz, y,u,v,w,z € X and
TFuUuFV,vVFEWWFEZZFEY.
d is called a C*—algebra valued hexagonal b— metric and (X, A, d) is called a C*—algebra
valued hexagonal b—asymmetric metric space.

Example 3.2. Let A = R? a C*—algebra with the partial order
(a,8) = (o, ) <=a<da and B<f

and X = {a, f,7,71,6,A\} with a, 8,7,71,5, A € RY,
we define

d: X xX — A
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by
d(a, ) = d(B, 8) = d(v,7) = d(n,n) = d(é,0) = d(\, A) = (0,0)

d(a, B) = d(B,a) = d(a,7) = d(v,a) = d(a, ) = d(n, @) = d(a, )

= d(6,a) = d(a,\) = d(\ a) = (4,4)

d(B,7) =d(v,B) = d(B,n) = d(n, B) = d(B3,6) = d(3,8) = d(8,\) = (5,5)
d(v,n) = d(n,7) = d(v,0) = d(d,7) = d(0,\) = d(A,6) = (1,1)
d(n,6) = d(é,n) = d(n,A) = d(A,n) = (2,2)
d(0,\) = (6,6) and d(X\,0) = (7,7).

It is easy to verify that d is a C*—algebra valued hexagonal b—asymmetric metric space.

Definition 3.3. Let X be a non empty setand F: X x X — A}.
Suppose the mapping d : X x X — A if it satisfies:
(1) d(z,y) = fand d(z,y) =0 &z =y Vr,y € X.
) d(z,y) = E(z,y)ld(x, u) + d(u,v) + d(v, w) + d(w, 2) + d(z,y)] Vo, y, u,0,w, 2 € X
and r # u,u £ v,V £ w,w # 2,2 £ y.

(X, A, d)is called a C*—algebra valued extended hexagonal b— asymmetric metric space.
Example 3.4. In the example 3.2 we consider £ : X x X — A} defined by
E(x,y)=(z+yz+y), Vo,ye X

we have that (X, A, d) is a C*—algebra valued extended hexagonal b— asymmetric metric
space.

Definition 3.5. Let (X, A, d) is a C*—algebra valued extended hexagonal b— asymmetric
metric space. A sequence {z,} in X is said to be:

(i) {x,} b—forward ( respectively b— backward) converges to x € X with respect to
Aif forall e = 0, 3N, € N such that

d(xz,x,) <€, (respectively d(x,,x) <¢).

(ii) {z,} converges to x if lim,_ood(x, ;) = limy,eod(Tp, x) = 6.

(ii1) {z,} is b—forward Cauchy sequence respect with A if Ve = 6, 3N, € N such that
d(xp,x,) = Ym >n> N..

(iv) {z,} is b—backward Cauchy sequence respect with A if Ve > 6, IN. € N such
that d(x,,, z,) 2 ¢ Vn>m > N..

Definition 3.6. Let (X, A, d) is a C*—algebra valued extended hexagonal b— asymmetric
metric space. X is said to be b—forward ( respectively b— backward) complete if every
b—forward ( respectively b— backward) Cauchy sequence {x,} in X, converges to x € X.

Definition 3.7. Let (X, A, d) is a C*—algebra valued extended hexagonal b— asymmetric
metric space. X is said to be complete if X is b—forward and b— backward complete.
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Lemma 3.8. Let (X, A,d) a C*-algebra valued extended hexagonal b— asymmetric metric
space. and {z,}, be a forward (or backward) Cauchy sequence with pairwise disjoint elements
in X. If {x,, }, forward converges to x € X and backward converges toy € X, then z = y.

Proof. Let € > . First assume that {x,} is a forward Cauchy sequence, so there exists
no € N such that ||d(z,, z,)| < STEGHT for all m > n > ng. Since {z,}, forward con-

verges to x so there exists ny € N such that ||d(z,,2)|| < 7%F T for all n > ny. Also

5| E(z,y

{x,}, forward converges to y so there exists ny € N such that||d(y, z,)| < z=¢ 1 for

5 E(z,y
all n > ny. Then for all N > max{ng, ny,ns},

d($v y) = E(I> y) [d(l‘, $n) + d(xna xn-i-l) + d($n+1v $n+2) + d($n+27 zn+3) + d(l’n+3, y)]

= d(z,y) < ||E(x, y) || ” [d(x, Ty) + d(xm xn—f—l) + d(Tnq1, xn—&-?) + d(Tni2, Tnis)

£
+ d(xni3, )| <5H|E(x,y)||m— =¢

As ¢ = 0 was arbitrary, we deduce that d(x, y) = 6, which implies z = y.
When {z, }, is a backward Cauchy sequence, the proof is similar to an earlier state. [J

Theorem 3.9. Let (X, A, d) is a complete C*—algebra valued hexagonal b— asymmetric metric
space and suppose T : X — X be a mapping satisfying

d(Tz, Ty) X Xd(x,y)\; Ve,y € X

with A € A and ||\|| < 1.
Then T has a unique fixed point in X.

Proof. Let xy € X and define a sequence {z,} by
Tpi1 =T, =T" M2y, YneN
d(xps1, @) = d(Txy, Trp_1) 3 XNd(Tp, Tp1)A

j ()\*)Qd(xnfla $n72>>\2

j ()\*)nd(l'l, [L’U))\n,

then d(z,11,z,) — 0 as n — oo.
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Form > 1and r > 1, it follows that

A(Tmirs Tm) 2 0[A(Tmar, Tonar—1) + d(Tmar—1, Tiar—2) + d(Tmar—2, Tmar—3)+
A(Trmr—3, Tmir—a) + A Tmir—a, Trn)]
= b[d(Tmgr, Trmgr—1) + A Tmsr—1, Tongr—2) + A Tpyr—2, Tongr—3)+
A(Tmgr—3, Tmgr—a)|+
D[ d(Lmsr—ss Trngr—5) + A(Zmr—s, Tmir—g) + A(Tmir—g, Timsr—7)+
A Tmtr—7; Tmar—g)|+
AT A2y, Tona) + ATy Tonrs)+

d('rm+37 xm+2> + d<xm+27 merl) + d(merla xm)]
4

= bz YR d (g, m ) AR b Z(/\ YR A2y, 20) N
k=1

b ! ()\*)md(xl, l’o))\m

4 4
< (B IAPE 4 [ld (g, wo) | e+ 1B D IAPC ) (1, w0) +

k=1 k=1
16" TP |d(r, 20) )T — 6 as m — oo.

Similary we obtain d(z,, Tpir) — 0 as m — oc.

Consequently, {z,} is b—forward and b— backward Cauchy sequence. By complete-
ness of X, there exists z € X such that lim,,_,,x, = 2.

Now we show that d(z,Tz) = d(Tz,z) = 6.

d(Tz,z) 2 b[d(Tz,Txy) + d(Tpi1, Tnre) + A Tpi2, Tnis) + d(Tpgs, Tpya) + d(Tp1a, 2)]
j b[)\*d(z, xn))\ + d(anrlu xn+2) + d<xn+2> xn+3) + d(anrB’ 'rn+4) + d($n+47 Z)]
& ld(z, T2)|| < [PIIIAIPNd(z, 2a) | + ld(@ns1, Tnra) | + d(@ng2; Tnys) |+

[d(zn 3, Tnsa)l| + |d(znia, 2)[[] = 6 (0 — o0).

Hence Tz = z i.e, z is a fixed point of 7.

Unicity:
Let 2/ # z be another fixed point of 7.
We have
0 < [ld(z, 2| < |A"d(z, 2)All
< [AIP[ld(z, 2.
Which is a contradiction (||A|]?> > 1), hence the fixed point z is unique. O

Example 3.10. Let X = [0,4] and A = R>.
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Defined : X x X — R? by

(lz = y[°0) ifz >y
d pr—
(0) { 0,1 —yl%) ifz <y,

It is easy to verify that (X, A, d

metric metric space. and Tx =

is a complete C*—algebra valued hexagonal b— asym-

, we have

(500 it =y

(o,('x;yl)fv‘) ifz < y.

d(Tx,Ty) =

1 1 1
Then d(Tx,Ty) = gIRQd(l',y)glR2 where ||§[R2|| < 1, the conditions of Theorem 3.9
are fullfilled. 7" has a unique fixed point x = 0.

Theorem 3.11. Let (X, A, d) is a complete C*—algebra valued hexagonal b— asymmetric met-
ric space and suppose T : X — X be a mapping satisfying

d(Tz,Ty) 2 A[d(z, Tz) +d(y, Ty)] ; Yo,y € X

1
with A € A and ||A]| < 5%

Then T has a unique fixed point in X.

Proof. Let xy € X and define a sequence {z,} by

Tpi1 = T, =T" M2y, YneN

d(l’n, xn—o—l) - d(TIn—la Txn) j )\[d(xn—la 'rn) + d<In7 xn—l—l)]
= (I — Nd(zp, Tpi1) X Ad(Tp—1,T,)

= 5nd(x07$1)7
Let 8= (I —X)"'()),

since ||\ < 5 we have || 5] < 1.
Then

([ - )\)d(xn7 wn«H) j )\d<$n715 xn)

= (B)"d(zo, 11),

then d(z,, x,11) — 0 as n — oo.
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Form > 1and r > 1, it follows that

A(@m, Tigr) 20T, Trng1) + A(Tit1s Tig2) + A(Tit2, Tings)+
A(@Tm+3, Tmta) + A(Tnra, T
= 0[d(Tm, Trms1) + A(Tpg1, Ting2) + A(Tpga, Tgs) +
A(Tmt3; Trmta)]
V2 [d(Tpmia, Tris) + A Xmis, Trmis) + A Xmie, Tmir)+
d(@mt7, Tmrs)]+
+ 0 d(Tmgr—s5, Tmsr—a) + A(Tgr—s, Trpir—3)+

d(Im—H“—?n $m+7"—2) + d(xm—&-r—Qa xm—i—r—l) + d(xm—‘rr—la xm—i—r)]
4

<bz Byt R d(xo, 1) 4+ 0T 12(5)m+kd($0,$1)+

k=1

b 16’"(1(:150, x1)

4 4
=< (Bl ISP  4 fld(o, an) | A+ -+ 017 D IBIP™) | d (o, 1)+

k=1 k=1
16" BP0, 21) )] = 6 as m — oo.

Similary we obtain d(z, 4y, ) — 0 as m — oc.
Consequently, {z,} is b—forward and b— backward Cauchy sequence. By complete-

ness of X, there exists z € X such that lim,,_,,x, = 2.
Now we show that d(z,Tz) = d(Tz,z) = 6.

d(Tz,2z) Xb[d(Tz,Tx,) + d(Tpi1, Tnio) + d(Tpao, Tnis) + d(Tpas, Toaa) + d(Tpia, 2)]
= b[Md(z, T2) + d(wn, Tn)) + d(@nt1; Tni2) + d(@ntz, Tnis) + d(Tngs, Tnia)
+ d(Tnt4, 2)]
& [ld(z, T2) || < [OIIIAdCz zn)ll + (A d(@n, 2ni1) + ld( @, 2ni2) ]
+ ld(@ns2, Tars) | + d(@nss, Tnaa)[| + [|d(@nta, 2)]]] = 6 (R — 00).

Hence Tz = z i.e, z is a fixed point of 7T'.
Unicity:
Let 2/ # z be another fixed point of 7.
We have

d(z,2") < Nd(2,Tz) +d(2',TZ"))
= ANd(z,2) +d(#',2") =10
which is a contradiction (d(z, ') = 8 = z = 2/), hence the fixed point z is unique. O

Theorem 3.12. Let (X, A, d) is a complete C*—algebra valued extended hexagonal b— asym-
metric metric space and suppose T : X — X be a mapping satisfying

d(Tz, Ty) 2 XN E(z,y)d(z,y)\ ; Yo,y € X
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1
with A € A, ||,\|| < 1and supm>1lzmn_>oo||E(xn+1,xn)”||E($n,mm>|| < H)\Hs)
1
and lima, m—soo || E(Xn, Tm) || < 75 H>\||2

Then T has a unique fixed point in X.

Proof. Let xy € X and define a sequence {z,} by

Tpi1 =T, =T" M2y, YneN

d($n+1> lﬁ) = d(TﬁEn, TJ:n—l) = )\*E(an, xn—l)d<xna xn—l)>\
j ()\*)QE(xna xnfl)E(l'nfb $n72)d<xn717 xan))\2

n
AT Bk, zir)d (@, 20) A"
k=1

then d(z,11,2,) = 0 asn — occ.
Form > 1and r > 1, it follows that

A(Zpmirs Tm) = E( i, T ) [A( Tt Tongr—1) + A(@pr—15 Tir—2) + Ad(Tomtr—2, Tmpr—3)+
A(Tmtr—3, Tmtr—a) + A Timir—1, Tm)]
2 E(@ntr, To)|d(@msr, Tmgr—1) + A @imgr—1, Tingr—2) + A(Totr—2, Tor—3)+
A(Trmyr—3, Tmtr—a)]+
E(@mirs Tm) E(Tmar—a; Tm) [A(Zmsr—4, Tmgr—5) + A(@Zmsr—5, Tomsr—o)
+ d(Tmtr—6s Tmtr—7) + A(Tmtr—7, Trmr—s) |+
v+ By, o) E(Tor—ay Tn) oo E (i1, T [d (T t5, Tra) + d(Tga, Tont3)

+ d(xm-&-Sa xm+2> + d(xm+27 xm—i-l) + d(Im-I—la xm)]

m-—+r
= E H E(xj, ) [d(kta, Trrs) + A(Tht3, Tiyo)
k=m j=m+1
m+r
+ d(‘rk-‘rQ’xk-‘rl) + d xk+17xk H E xj7'rm Im—i—l;xm)
j=m+1
m+r n
*\k+3 k+3
= E H E(xj, 2m))[(XY) HE(xk,xk_l)d(xl,xo))\
k=m j=m+1 k=1

4 (\F)k T2 H E(xg, vp_1)d(21, 10) A2 4+ (A7) H E(xg, 2p_1)d(21, 10) A"
k=1 k=1
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n m-—+r n
+ W] Ear wr-n)d(@n, 20N+ [ B, 2m) )" ][ E(@r wr-1)d(@, 20) A"
k=1 j=m+1 k=1
m+r k n
< (@, z)ID TT 1B @,z ] ] B ) AP
k=m j=m+1 k=1
+IAPENT] B )|+ I PO T ] B e 2 1+
k=1 k=1
n m-—+r n
NI T T B w0 I+ Nzl TT B ma AP E e 20 I
k=1 j=m+1 k=1

— 60 asm — 0.

Similary we obtain d(x,, Tpmyr) = 0 as m — .

Consequently, {z,} is b—forward and b— backward Cauchy sequence. By complete-
ness of X, there exists 2 € X such that lim,,_,cc®, = 2.

Now we show that d(z,Tz) = d(Tz,z) = 0

d(Tz,z)

< E(Tz, 2)[d(Tz,Tx,) + d(@pi1, Tni2) + Ad(Tnt2, Tngs) + d(@nis, Tnia) + d(Tpia, 2)]

j E(TZ; Z)[)\*d(z, xn)/\ + d(xn+17 xn+2) + d(l‘n—&—?, xn+3) + d(l’n-i-?n xn+4) + d(xn+47 Z)]

& |ld(z, T2)l| < |1E(Tz )N IMPd(z, @)l + ld@nsr, @)l + [d(@nsz, 2ass) [+

[d(@nis, Znga) | + ld(Zna, 2)||] = 0 (n — 00).

Hence Tz = z i.e, z is a fixed point of 7.

Unicity:
Let 2’ # z be another fixed point of T'.
We have
0 < [ld(z,2) | < [A"E(2,2')d(z, 2)A|
< APIE, )lld(=z, 2]
1
< M s lld(z )
[[A[?
< ld(z, 2|,
which is a contradiction, hence the fixed point z is unique. O

Example 3.13. Consider 7' : X — X defined by Tx = g in the Example 3.10 and
E: X x X — A} defined by

E(r,y)=(x+y,x+y) Yo,y € X,

we have

=86 ) e >y

(o,('“"_m)ﬁ) if o <y.
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With

1
d(Tz, Ty) < gled(x, y)=Ig2

and

1
3

1 1
dcr$7jhﬁ = g]RZCEﬁ—y,ﬂf+-y)d($7y)§lm2
Then T has a unique fixed point.

1
N ||Z]R2|| <land4 >1

Theorem 3.14. Let (X, A, d) is a complete C*—algebra valued extended hexagonal b— asym-

metric metric space and suppose T : X — X be a mapping satisfying

d(Tz,Ty) X Nkd(z,y)\; Ve,y € X

withA € A ke Ayand [N\ <1, [k|| > 1.
Then T has a unique fixed point in X.

Proof. If we put E(z,y) = k in Theorem 3.12 we obtain the result.

g

Example 3.15. Let A = M;,(R) of all 2 x 2 matrices with the usual addition ,scalar
multiplication and multiplication.

Define partial ordering on A as (

fori=1,2,3,4.

: a
For any A € A we define its norm as, ||
a

Let X = AU B, where A = {0

ay Qg

az a4

11111

7273747576

Defined : X x X — [0, +oo] as follows:

d(xz,y) =d(y,x) forall x,y € B.
dlz,y) =0 y=uz forallz,y € X.

and

\

)

1 A2 ||

by by
bs b4

><:>G¢Zbi

1

_ rfmmr.

=1

}and B = [1,2].

05 0
0 0.5

04 0

0 0.

)

0 0.4)

045 0
45

0.8 0
0 0.8

|z — 9
0

)

0

otherwise.
|z =y

Then (X, A, ,d) is a C*-algebra valued extended hexagonal b— asymmetric metric space

with E(z,y) =

2 0
0 2

NE@y)l =1,
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Define mapping 7' : X — X by

iy zrif x € (1,2
()= lifz € A.

Evidently, 7'(z) € X. Consider the following possibilities:
case 1 :z,y € [1,2] x # y. Then

1

T(z) =2, T(y) = y?, d(Txz,Ty) = (

On the other hand

it follows that

Indeed
1 1
d(Tx,Ty) = ( ey 1 / 1 )
0 T2 — Y2
1
- 0 \/Lg 0 2 0 xz—vy
= NE(z,y)d(z, y)A
where
1
0 L
V5
with verify

On the other hand

It follows that
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Indeed
z2—1 0
d(Tx, Ty) = 1
(Tz, Ty) 0 m_l)
1 1
0 7 0 2 0 r—1 0 7
1 1
= N E(x,y)d(x,y)\
Where
1
0 L
NG
with verify
V2
= Y2 <1
5

Therefore, T has a unique fixed point z = 1.

Example 3.16. Let X = R, and A = M5(R, ) of all 2 x 2 matrices with the usual addition

T e : . a; a
,scalar multiplication and multiplication. Define partial ordering on A as ( b ) -

as a4

by b

V2 ) ea > b fori=1,2,3,4.
bs by

. 1
. a, a9 1=4 ) 2
For any A € A we define its norm as, || = 1> |ail?] -
a4 i=1

as
Define d: X x X — M(R,) as follows:

)
et —e¥ 0 .
d(fv,y)=< 0 0>wa2y

d(x,y)z(o 0 )zf:vgy

0 e*—eY

\

e +e¥ 0
0 0
Then (X,A,d) is a C*-algebra valued extended hexagonal b— asymmetric metric

and £ : X x X = My(R,), E(z,y) =

space.
Define mapping 7' : X — X by

T(z) = %
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Evidently, T'(z) € X. Then

.

d(Tz, Ty) = ( ‘

d(Ta;,Ty)=<0 . 0 y)@f:v<y

0 e 5—e 3

\
It follows that
d(Tx,Ty) < N E(z,y)d(z,y)\.

Indeed
e (4 1) () ) ()
< 10 e’ + e¥ 10
e (L) )0t (e
Whe;e
-0
with verify

1
Ml == <1.
M= 5

Therefore, T has a unique fixed point z = 0.

Definition 3.17. Let X be a nonempty set, a mapping 7" is C*—algebra valued extended
hexagonal b— asymmetric expansion mapping on X, if T': X — X satisfies:

(1) T(X) = X.
(2) d(Tx, Ty) = NE(z,y)d(z,y)» with A € A and ||A7}]| < 1.

Theorem 3.18. Let (X,A,d) is a complete C*—algebra valued extended hexagonal
b—asymmetric metric space and suppose T' : X — X be a mapping satisfying

d(Tz,Ty) = NE(z,y)d(z, y)\ Vz,y € X,

with A € A, ||\ < L.
Then T has a unique fixed point in X.

Proof. Firstly T is injective. We have for any x,y € X with z # y if Tx = TY.
0 =d(Tz,Ty) = N'E(z,y)d(z, y)A
= d(z,y) = 0.

Which is a contradiction. Thus 7' is injective.
Substitute x,y with Tz, T~1y, respectively, in

d(Tz,Ty) = N E(z,y)d(z,y)\

and we get
d(z,y) = NE(T 'z, T 'y)d(T 'z, T~ 'y)\.
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Then
AN d(z,y) AN = E(T e, T y)d(T 2, T y) = d(T 2, T 'y).

Using Theorem 3.9, there exists a unique z such 77!z = x, which means there has a
unique fixed point z € X such that Tz = z. O

4. APPLICATION

As application of theorem on complete C*—algebra valued extended hexagonal
b—asymmetric metric spaces, existence and uniqueness results for a type of following
integral equation

x(t) = /UK(t, s,x(t))ds + f(t) t € U,

where U is a Lebesgue measurable set.
Suppose that

(1) K:UxUxR—=Rand f € L*U).
(2) There exists a continuous function ¢ : U x U — R and « € (0, 1) such that

|K(t,s,u) — K(t,s,0)| < alo(t,s)(u—v)| Vt,s € U and u,v € R.

(3) suprer [, @(t, s)|ds < 1.

Then, the integral equation has a unique solution z € L>*(U).

Proof. Let X = L*(U), H = L*(U) and A = B(H).
Define a C*—algebra valued extended hexagonal b— asymmetric metric

d: X xX —=A

{d<x>y) = TMg—y fo > Y.
d(fag) :Wyf:rifygx-

Where m,(¢) : H — H is the multiplication operator defined by 7, (¢) = h.p for ¢ € H.
Then d is a C*—algebra valued extended hexagonal b— asymmetric metric.
Define T: X — X by

Tx(t):/UK(t,s,x(t))derf(t), tel.
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If v > y we have, forany h € H
||d(TI,Ty)|| = SUP|n|=1 7Tz yh h)

= sunpes [ 1| [ K(t,s.2(0) - Kt p(0)ds (e
< supper [ [ 1K(ts,0(0) = Kt s.y@lasl o)t
< sumnios [ [ loplt,)(a(s) = w(s)lasl (o)

< asumos [ [ lott s)laslib@)Fat e =yl

< aSUplth1/”90<t75>|d5]-sup|h|1/ h(t)Pdt. || — yll
U U

< allz =yl
= afld(z, )|
In the same way for x > y.
Then the integral equation has a unique solution z € L*>(U). O
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