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ABSTRACT. In the present article, we have obtained the summations of certain infinite
series by using partial fraction approach, some hypergeometric summation theorems of
positive and negative unit arguments, Digamma, trigamma, tetragamma, Riemann Zeta
functions, lower case beta function of one-variable and other associated functions. We
have also obtained some new hypergeometric summation theorems of positive and neg-
ative unit arguments.

1. INTRODUCTION AND PRELIMINARIES

The enormous popularity and broad usefulness of the hypergeometric function oF}
and the generalized hypergeometric functions ,F, (p,q € Ny) of one variable have in-
spired and stimulated a large number of researchers to introduce and investigate hy-
pergeometric functions of two or more variables (see, e.g., [4]). A serious, significant,
and systematic study of the hypergeometric functions of two variables was initiated by
Appell [3], who offered the so-called Appell functions Fy, Fs, F3, and Fj which are gen-
eralizations of the Gauss hypergeometric function. The confluent forms of the Appell
functions were studied by Humbert [8]. A complete list of these functions can be seen in
the standard literature. Later, the four Appell functions and their confluent forms were
further generalized by Kampé de Fériet, who introduced more general hypergeometric
functions of two variables. The notation defined and introduced by Kampé de Fériet for
his double-hypergeometric functions of superior order was subsequently abbreviated by
Burchnall and Chaundy [5].

A natural generalization of the Gaussian hypergeometric series o F} [« 3;7; 2] is ac-
complished by introducing any arbitrary number of numerator and denominator param-
eters. Thus, the resulting series
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is known as the generalized hypergeometric series, or simply, the generalized hyper-
geometric function. Here p and ¢ are positive integers or zero and we assume that

the variable z, the numerator parameters oy, as, . . ., @, and the denominator parameters
B1, P2, - - ., By take on complex values, provided that
B #0,-1,=2,...;5=1,2,...,q (1.2)

Supposing that none of the numerator and denominator parameters is zero or a negative
integer, we note that the ,F, series defined by equation (1.1):
(i) converges for |z| < oo, if p < g,

(ii) converges for |z| < 1,ifp=¢q+ 1,

(iii) diverges forall z, 2 £ 0, if p > ¢ + 1,
(iv) converges absolutely for |z| = 1, if p = ¢+ 1 and R(w) > 0,
(v) converges conditionally for |z| =1 (2 # 1),ifp=g+ 1and —1 < R(w) =0,
(vi) diverges for |z| = 1,if p = ¢ + 1 and R(w) < —1,

where, by convention, a product over an empty set is interpreted as 1 and

q p
W = Zﬁj—ZOéj: (13)
j=1 j=1

= Sum of denominator parameters — Sum of numerator parameters.

In this paper, we shall use the following standard notations:
N:={1,2,3,---};Ny:=NU{0};Z, =2 {0} ={0,-1,—-2,-3,--- }.
The symbols C, R, N, Z, R and R~ denote the sets of complex numbers, real numbers,
natural numbers, integers, positive and negative real numbers, respectively.
The Pochhammer symbol («), (o,p € C) [12, p.22, Eq.(1), p.32, Q.N.(8) and Q.N.(9), see
also [15] p.23, Eq.(22) and Eq.(23)] is defined by:

(1 ;@:O,QEC\{O}),
. ala+1)---(a+n—-1);p=neNyaecC),
- kn.
(@)= DOTP) _JCim e Nos0 < k< ),
0 ;= —n;p==Fk;n,k € No;k >n),

L S (p=—kk €N;a € C\Z),

\ (1-a),

it being understood conventionally that(0), = 1 and assumed tacitly that the Gamma
quotient exists (see, for details, [15, p.21 et seq.]).

The Riemann Zeta function ((z) [10, p.19] is defined as:

()= Y o Rele) > 1 14
S (_1)k 1-z
D = 27 = 1)((R); Re(z) > 0 (1.5)
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The Catalan constant is defined as:

= F —1 | =0.9159655942... 1.6
G=2 Gitie 2k+1 2 (1.6

k=0

[\ [N}
[\ [N}

The logarithmic derivative of the Gamma function also known as psi function or Digamma
function [12, p.10, Eq.(1), [14], p.24, Eq.(2), [9], p.12, Eq.(1)], is defined as:

d I'(2)
= — r = : 0,—1,—-2,-3,... 1.7
W)= S {TE) =[50 2 #0.-1-2.3 17
1 - z
= 5 — = - -1,-2.-3, ... 1.8
(=) == z+§::n(z+n),z7éo, =23, (18)
-y § S S P S (1.9)
Z+n (n+1) Y ) ) ) 3 )
where 7 is Euler-Mascheronl constant and v = 0.577215664901532860606512....
7,/1(1):—7,1/}(%):—2€n2—7,¢(g):2—2€n2—7, (1.10)
7 ™3 3 V3 3

— _ Ve _ = = - (111
¢(6) 6—v————5m3-2Mn2 ¢<) 5 5 (1.11)

) 8 1
5y _8 _ _ )= omo— 1.12
(8 (2) g ~2n2—7, 9 (2) tn2—-, (1.12)

1 1473 5) 1473 448
@((2) = i 1.13
4 (2) ©25.79436 w ( ) 25.79436 + 27 ( )
1 2 3 2 ) 2

W)=, W [Z) =" -4, gV (2] == —44. 1.14
v (2) v (2) S —4v (2) ! (114

The polygamma function 1™ (2) ([14, p.33, Eq.(52), Eq.(53), p.34, Eq.(58)], see also [1, p.260,
Eq.(6.4.10), Eq.(6.4.4), [7], p-45, Eq.(9), [10], p.15]), is defined as:

dn+1 dn

(n _ _ . 1 _
0 )(z)——dznﬂfn(F(z))—dzn@/)(z), neNy, 2z#0,—1,-2, ... (1.15)
> 1
W) — (] S L. —1,-2, . 1.1
VO = Ml g N 2 40,712 (1.16)
Lower case beta function of one variable:
1 z+1 2\ G(z)
ﬁ(z)—z[w( . )—¢<2>1_ 2 A 0,1, =23, (1.17)
0 1aza
Z - 2F1 —1 |, -2#0,1,2,3,... (1.18)
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mn 0 _1\k
B () = %6(2) =(-1)"n! ) (Z(%; —z € N,. (1.19)
k=0
B(1)=1tn2, B(2)=1—1tn2, Y1) = —g, (1.20)
50 (;) — 4G — 4, BV(2) = ;T_; _1 (1.21)

1 s 1 ™2 3 4—
6(5):§’B<Z>:T+\/§€n<\/§+l)7ﬁ(§): 5 (1.22)

Some hypergeometric summation theorems in terms of Digamma ¢(b), trigamma ¢)(!) (b),
tetragamma v(?) (b) functions and derivatives of lower case Beta function of one-variable

are given below:
See ref. [11, p. 489, Entry (7.3.6.(9))]

a+1;

See ref. [11, p. 536, Entry (7.4.4.(34))]

1, b, b;
3 F 1| =v? W (b), (1.24)
b+ 1, b+1;

where 1 +b € C\Z; and b = a.
See ref. [11, p. 546, Entry (7.4.5.(9))]

L, a,
3 F) —1 | = —a?pY(a), (1.25)
a+1, a+1;

where 1 +a € C\Z; and b = a.
See ref. [11, p. 554, Entry (7.5.3.(3))]

1, a, b, ¢
e 1 | = —abc v(a) + ¢(b) Y(c)

+ Y
1+a,1+b,1+¢ (b—a)lc—a)  (a=b)lc=b)  (a—c)(b—c)

(1.26)
where 1 +a, 1+b, 1 +c€ C\Z, and a # b,b # c,a # c.
See ref. [11, p. 554, Entry (7.5.3.(5))]
bbb i
o L= Y3 (b), (1.27)

b4+1,b+1, b+1;
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where 1 +b € C\Z; anda =b=c.

Dougall’s theorem [2, p.71, Eq.(2.2.10), p.147, Entry(3.5.2), [6], [11], p.564, Entry(7.6.2(3))
[13], p.56, Eq.(2.3.4.5), p.244, Entry(I11.12), see also [4], p.27, Eq.(4.4(1))] in terms of Gamma
function is given as:

a, 1+3,0, ¢, d;
5Fy 1
S, 1+ta—-b1+a—c1+a—d;

CT+a-bT(1+a—T(1+a—dT(1+a—b—c—d)
CTl4+al(l4+a—b—c)l(14+a—b—dIl(1+a—c—d)’
provided Re(a —b—c—d) > —land §, 1+a—b, 1+a—c, 1+a—decC\Z.

(1.28)

The present article is organized as follows. In section 2, we have shown that the dif-
ference of two divergent series may be convergent. In Section 3, we have obtained the
summations of certain infinite series whose general terms are rational functions of n,
by using partial fraction and some hypergeometric summation theorems of positive and
negative unit arguments. In section 4, we have obtained some new hypergeometric sum-
mation theorems.

2. DIFFERENCE OF TWO DIVERGENT GAUSS’ SERIES

1
(5+2n)°

Example : Consider the two positive terms infinite series ), (1+—12n) and >,
which are divergent in nature by using the comparison test.
Taking the difference of the above two series, we get

[e.9] [e.9]

- 4
nz 1+2” Z 5+2n _;(1+2n)(5+2n)' 2.1

The right hand side of equation (2.1) is convergent by using the Raabe’s higher ratio test.
In terms of hypergeometric function, the equation (2.1) can be written as

> 1 o = (3). 3),
O nin
5 1 ) 21 A 531
2F1 ]_ - = 2F1 ]_ - = 3F2 ]_ . (22)
3. 5 7. D 3 7.
27 27 27 2

Since both the Gauss’ series having the positive unit argument on left hand side of equa-
tion (2.2) are divergent. But their difference is convergent

Multiplying both sides of equation (2.2) by 5>, for application point of view in next
section, we get

Corollary 1. The difference of two divergent Gauss’ series having the positive unit argument
may be convergent
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o Fy 1| = =<3 1. (2.3)

N [~1
ol

3. SUMMATION OF SOME INFINITE SERIES

o0
1
1.
nz:;) (256n8 + 3072n7 4 1536015 + 41472n° + 65568n* + 61632n3 + 33440n? + 9600n + 1125)

1 1572

- _ , 1
27 4096 81)

N Z (32n* + 120n% + 15602 + 82n + 15) { (1), }* (1), (2)., 1

2(1296m° 4 9072n4 + 2455203 + 32112n2 + 20341n 4 5005) (2) (L), 5473
(3.2)
3
<. (5+8n)

) Z ) (D, (G, eava a3

n=

T+ 302 +3n+1) 277 [ (9)]°

. f: (32 + 100 +3) {(1),}° (3), (3), 1 54
(n!)? (216n* 4 684n3 + 750n% + 3170+ 35) () (2) 273 '

n=

S (-
5. =12/n2 - 23+ 16G. (3.5
nzg (4nb + 36n° 4 133n* + 258n3 + 277n? 4+ 156n + 36) " + (3.5)
6. i ! =/n2— —. (3.6)
£~ (8n® + 24n? + 22n + 6) 2
7. i ! —3+§€n3+2€n2 (3.7)
2~ (36n + 108n2 + 107n + 35) 2 ' :
N (1+n)? n?
8. = —. 3.8
nZ:o (16n* 4 64n3 + 88n2 +48n +9) 64 (3.8)
S (=" 1 2v/2 W2 1
9. =—-—/2+-| — -1 —In (1 2)——.
;(16n4+52n3+56n2+23n+3) 3" +5 3 +— n +v2) =
(3.9

Proof of the result (3.1) :
On factorizing the general term of equation (3.1) and making use of partial fractions, we

have
1
(256m8 4+ 3072n" + 1536016 + 41472n5 + 65568n* + 61632n3 4+ 33440n2 + 9600n + 1125)
15 =7 1 -1 15 —7 —1
2048 1024 256 64 2048 1024 256

T 2n+1)  2n+12 T @n+1)3 ' (2n+3)2  (2n+5)  (2n+5)2 | (2n+5)3
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Now taking summation on both sides and n varying from 0 to oo, we get
[e.e]
> ;
o (2568 + 3072n7 + 1536018 + 41472n° + 65568n* + 61632n3 + 33440n2 + 9600n + 1125)

I CNONE (1), (3, ),
n<2>n<>n 3

15
"0k 24 (1), 1021 2 (), (3),

Mg

n=0 n= n=0 n=0
3 o) 7 (3, G), 1 (3), (%)n (%)n
i L0 B S (00w SO ()
Using the definition of generalized hypergeometric function, we get
- 1

nzzo (256n8 4+ 3072n7 + 1536015 + 41472n° + 65568n* 4+ 61632n3 + 33440n2 + 96001 + 1125)

1 . 1 1 . 1 1 1 .
15 29 17 7 23 99 17 1 27 929 9 1a
= o1 - 3Fo L |+ 50z b3 |-
2048 3. 1024 3 3. 256 3 3 3.
27 27 27 27 27 2
3 3 . .
1 21 9 1) 3 %» 17
- — 1 —
576 77|, 2048 *7 1|
97 39 bY)
5 5 5 5 5 1.
7 27 97 1 27 27 927
— 3Fy 1] - aF3 1. (3.10)
25600 . 32000 S

T 7. T T 1
27 27 20 20 2

Using summation theorems (1.24), (1.27) and corollary (2.3) in equation (3.10), we get

> 1

7;) (256n8 + 3072n7 4 1536015 + 41472n° + 65568n* 4+ 61632n3 + 33440n2 + 9600n + 1125)

15 5 1 1
_ 15 5y (VLT @
1096 {¢ (2) v (2)} 1096 ye ( ) 2096 ¥ ( )
9 3 175 125 5
9 w3 _ w (5 @ (9
5304 ¥ (2) 102200 ¥ (2) + 512000 ¥ (2)
15 (8 s 1 1473
= 2 1% oy (22— b - () _ _
1096 {3 n2-y-(-2n 7)} 1096 ( 2 ) 1096 ( 25.79436)
9 w2 175 w2 125 1473 448
_ 2 (T ) - 44+ _ =
2304 \ 2 102400 \ 2 512000 \  25.79436 ' 27

40 36 7000 448 2( 7 9 175 )

4096 * 2304 * 921600 * 110592 8192 * 4608 * 204800

On simplifying further, we arrive at the result (3.1).

Proof of the results (3.2) to (3.9):
The proof of results (3.2) to (3.9) can be obtained by following the same procedure as in

the proof of the result (3.1) and making use of Dougall’s theorem (1.28) and other sum-

mation theorems. So we omit the details here.
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4. REPRESENTATION OF INFINITE SERIES (3.1) TO (3.9) IN HYPERGEOMETRIC FORMS

' 125 168757
5 Fy 1| =2 - (4.1)
307 7 1. 3 4096
29 927 927 92
9 3 5 1 2.
47 27 27 37 3 1 1
5 5 17 10, 162mv/3
Y47 6 6
3 5 1 1 1.
8y 40 40 4 D 2561/2
5F4 ]. - 3\12° <43)
2,2, 2 3 135/ [T ()]
7 1 3 1 2.
47 27 27 37 3 35
5Fy : (4.4)
9 3 1 13 6mv/3
Y49 60 6
17 17 17 %7 %7
5Ey —1 | =828 —432/n 2 — 576G. (4.5)
5 5.
37 37 25 9
1 3
17 ]-7 25 99
4l 1| =6Mm2— (4.6)
3 5
27 29 9
5 7
1a 17 6’ 6’ 05
1 F5 1 :—105+—€n3+706n2 4.7)
9 1 13
Y6 6
11
25 929 27 27 97T2
5 5 1.
27 929
11,3 1
sy 929 40 2 4 3
1 F5 -1 | =tn 2+—<£—1>+£€(+\/_) = (4.9)
5 5 5. 5) 5
) 920

Proof of the results (4.1) to (4.9): The proof of results (4.1)to (4.9) can be obtained by using
the definition of generalized hypergeometric function of one variabl
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5. CONCLUSION

In this paper, we have obtained the summations of certain infinite series by using partial
fraction and some hypergeometric summation theorems of positive and negative unit
arguments, Digamma, trigamma, tetragamma functions, lower case beta function of one-
variable and other associated functions. We have also obtained some hypergeometric
summation theorems. We conclude this paper with the remark that the summation of
other infinite series can be derived in a same way. Besides presented infinite series
is supposed to find various applications in Numerical Analysis, Statistics and Linear
Programming.
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