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Abstract. In the present article, we have obtained the summations of certain infinite
series by using partial fraction approach, some hypergeometric summation theorems of
positive and negative unit arguments, Digamma, trigamma, tetragamma, Riemann Zeta
functions, lower case beta function of one-variable and other associated functions. We
have also obtained some new hypergeometric summation theorems of positive and neg-
ative unit arguments.

1. Introduction and preliminaries

The enormous popularity and broad usefulness of the hypergeometric function 2F1

and the generalized hypergeometric functions pFq (p, q ∈ N0) of one variable have in-
spired and stimulated a large number of researchers to introduce and investigate hy-
pergeometric functions of two or more variables (see, e.g., [4]). A serious, significant,
and systematic study of the hypergeometric functions of two variables was initiated by
Appell [3], who offered the so-called Appell functions F1, F2, F3, and F4 which are gen-
eralizations of the Gauss hypergeometric function. The confluent forms of the Appell
functions were studied by Humbert [8]. A complete list of these functions can be seen in
the standard literature. Later, the four Appell functions and their confluent forms were
further generalized by Kampé de Fériet, who introduced more general hypergeometric
functions of two variables. The notation defined and introduced by Kampé de Fériet for
his double-hypergeometric functions of superior order was subsequently abbreviated by
Burchnall and Chaundy [5].

A natural generalization of the Gaussian hypergeometric series 2F1[α, β; γ; z] is ac-
complished by introducing any arbitrary number of numerator and denominator param-
eters. Thus, the resulting series

pFq

 (αp);

z

(βq);

 = pFq

 α1, α2, . . . , αp;

z

β1, β2, . . . , βq;

 =
∞∑
n=0

∏p
j=1(αj)n∏q
j=1(βj)n

zn

n!
, (1.1)
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is known as the generalized hypergeometric series, or simply, the generalized hyper-
geometric function. Here p and q are positive integers or zero and we assume that
the variable z, the numerator parameters α1, α2, . . . , αp and the denominator parameters
β1, β2, . . . , βq take on complex values, provided that

βj 6= 0,−1,−2, . . . ; j = 1, 2, . . . , q. (1.2)

Supposing that none of the numerator and denominator parameters is zero or a negative
integer, we note that the pFq series defined by equation (1.1):

(i) converges for |z| <∞, if p ≤ q,
(ii) converges for |z| < 1, if p = q + 1,

(iii) diverges for all z, z 6= 0, if p > q + 1,
(iv) converges absolutely for |z| = 1, if p = q + 1 and R(ω) > 0,
(v) converges conditionally for |z| = 1 (z 6= 1), if p = q + 1 and −1 < R(ω) 5 0,

(vi) diverges for |z| = 1, if p = q + 1 and R(ω) 5 −1,

where, by convention, a product over an empty set is interpreted as 1 and

ω :=

q∑
j=1

βj −
p∑
j=1

αj = (1.3)

= Sum of denominator parameters − Sum of numerator parameters.

In this paper, we shall use the following standard notations:
N := {1, 2, 3, · · · } ;N0 := N

⋃
{0} ;Z−0 := Z−

⋃
{0} = {0,−1,−2,−3, · · · } .

The symbols C, R, N, Z, R+ and R− denote the sets of complex numbers, real numbers,
natural numbers, integers, positive and negative real numbers, respectively.
The Pochhammer symbol (α)p (α, p ∈ C) [12, p.22, Eq.(1), p.32, Q.N.(8) and Q.N.(9), see
also [15] p.23, Eq.(22) and Eq.(23)] is defined by:

(α)p :=
Γ(α + p)

Γ(α)
=



1 ; (p = 0;α ∈ C\{0}),
α(α + 1) · · · (α + n− 1) ; (p = n ∈ N;α ∈ C),
(−1)kn!
(n−k)! ; (α = −n; p = k;n, k ∈ N0; 0 ≤ k ≤ n),

0 ; (α = −n; p = k;n, k ∈ N0; k > n),
(−1)k
(1−α)k

; (p = −k; k ∈ N;α ∈ C\Z),

it being understood conventionally that(0)0 = 1 and assumed tacitly that the Gamma
quotient exists (see, for details, [15, p.21 et seq.]).
The Riemann Zeta function ζ(z) [10, p.19] is defined as:

ζ(z) =
∞∑
k=1

1

kz
; Re(z) > 1. (1.4)

∞∑
k=1

(−1)k

kz
= (21−z − 1)ζ(z); Re(z) > 0. (1.5)
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The Catalan constant is defined as:

G =
∞∑
k=0

(−1)k

(2k + 1)2
= 3F2

 1, 1
2
, 1

2
;

−1
3
2
, 3

2
;

 = 0.9159655942... (1.6)

The logarithmic derivative of the Gamma function also known as psi function or Digamma
function [12, p.10, Eq.(1), [14], p.24, Eq.(2), [9], p.12, Eq.(1)], is defined as:

ψ(z) =
d

dz
`n {Γ(z)} =

Γ
′
(z)

Γ(z)
; z 6= 0,−1,−2,−3, ... (1.7)

ψ(z) = −γ − 1

z
+
∞∑
n=1

z

n(z + n)
; z 6= 0,−1,−2,−3, ..., (1.8)

ψ(z) = −γ −
∞∑
n=0

{
1

(z + n)
− 1

(n+ 1)

}
; z 6= 0,−1,−2,−3, ..., (1.9)

where γ is Euler-Mascheroni constant and γ ∼= 0.577215664901532860606512....

ψ(1) = −γ, ψ
(

1

2

)
= −2 `n 2− γ, ψ

(
3

2

)
= 2− 2 `n 2− γ, (1.10)

ψ

(
7

6

)
= 6− γ − π

√
3

2
− 3

2
`n 3− 2 `n 2, ψ

(
5

6

)
= −γ +

π
√

3

2
− 3

2
`n 3− 2`n 2. (1.11)

ψ

(
5

2

)
=

8

3
− 2`n2− γ, ψ

(
1

2

)
= −2 `n 2− γ, (1.12)

ψ(2)

(
1

2

)
= − 14π3

25.79436
, ψ(2)

(
5

2

)
= − 14π3

25.79436
+

448

27
, (1.13)

ψ(1)

(
1

2

)
=
π2

2
, ψ(1)

(
3

2

)
=
π2

2
− 4, ψ(1)

(
5

2

)
=
π2

2
− 4.4. (1.14)

The polygamma functionψ(n)(z) ( [14, p.33, Eq.(52), Eq.(53), p.34, Eq.(58)], see also [1, p.260,
Eq.(6.4.10), Eq.(6.4.4), [7], p.45, Eq.(9), [10], p.15]), is defined as:

ψ(n)(z) =
dn+1

d zn+1
`n (Γ(z)) =

dn

d zn
ψ(z); n ∈ N0, z 6= 0,−1,−2, ... (1.15)

ψ(n)(z) = (−1)n+1 n!
∞∑
k=0

1

(z + k)n+1
; n ∈ N, z 6= 0,−1,−2, ... (1.16)

Lower case beta function of one variable:

β(z) =
1

2

[
ψ

(
z + 1

2

)
− ψ

(z
2

)]
=
G(z)

2
, z 6= 0,−1,−2,−3, .... (1.17)

β(z) =
∞∑
k=0

(−1)k

(z + k)
=

1

z
2F1

 1, z;

−1

1 + z;

 , −z 6= 0, 1, 2, 3, ... (1.18)
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β(n)(z) =
dn

dzn
β(z) = (−1)n n!

∞∑
k=0

(−1)k

(z + k)n+1
; −z ∈ N0. (1.19)

β(1) = `n 2, β(2) = 1− `n 2, β(1)(1) = −π
2

12
, (1.20)

β(1)

(
3

2

)
= 4G− 4, β(1)(2) =

π2

12
− 1, (1.21)

β

(
1

2

)
=
π

2
, β

(
1

4

)
=
π
√

2

2
+
√

2 `n(
√

2 + 1), β

(
3

2

)
=

4− π
2

. (1.22)

Some hypergeometric summation theorems in terms of Digammaψ(b), trigammaψ(1)(b),
tetragamma ψ(2)(b) functions and derivatives of lower case Beta function of one-variable
are given below:
See ref. [11, p. 489, Entry (7.3.6.(9))]

2F1

 1, a;

−1

a+ 1;

 = aβ(a); 1 + a ∈ C\Z−0 . (1.23)

See ref. [11, p. 536, Entry (7.4.4.(34))]

3F2

 1, b, b;

1

b+ 1, b+ 1;

 = b2 ψ(1)(b), (1.24)

where 1 + b ∈ C\Z−0 and b = a.

See ref. [11, p. 546, Entry (7.4.5.(5))]

3F2

 1, a, a;

−1

a+ 1, a+ 1;

 = −a2 β(1)(a), (1.25)

where 1 + a ∈ C\Z−0 and b = a.

See ref. [11, p. 554, Entry (7.5.3.(3))]

4F3

 1, a, b, c;

1

1 + a, 1 + b, 1 + c;

 = −abc
[

ψ(a)

(b− a)(c− a)
+

ψ(b)

(a− b)(c− b)
+

ψ(c)

(a− c)(b− c)

]
,

(1.26)
where 1 + a, 1 + b, 1 + c ∈ C\Z−0 and a 6= b, b 6= c, a 6= c.

See ref. [11, p. 554, Entry (7.5.3.(5))]

4F3

 1, b, b, b;

1

b+ 1, b+ 1, b+ 1;

 =
−b3

2
ψ(2)(b), (1.27)



Functional Analysis 5

where 1 + b ∈ C\Z−0 and a = b = c.

Dougall’s theorem [2, p.71, Eq.(2.2.10), p.147, Entry(3.5.2), [6], [11], p.564, Entry(7.6.2(3))
[13], p.56, Eq.(2.3.4.5), p.244, Entry(III.12), see also [4], p.27, Eq.(4.4(1))] in terms of Gamma
function is given as:

5F4

 a, 1 + a
2
, b, c, d;

1
a
2
, 1 + a− b, 1 + a− c, 1 + a− d;


=

Γ(1 + a− b)Γ(1 + a− c)Γ(1 + a− d)Γ(1 + a− b− c− d)

Γ(1 + a)Γ(1 + a− b− c)Γ(1 + a− b− d)Γ(1 + a− c− d)
, (1.28)

provided Re(a− b− c− d) > −1 and a
2
, 1 + a− b, 1 + a− c, 1 + a− d ∈ C\Z−0 .

The present article is organized as follows. In section 2, we have shown that the dif-
ference of two divergent series may be convergent. In Section 3, we have obtained the
summations of certain infinite series whose general terms are rational functions of n,
by using partial fraction and some hypergeometric summation theorems of positive and
negative unit arguments. In section 4, we have obtained some new hypergeometric sum-
mation theorems.

2. Difference of two divergent Gauss’ series

Example : Consider the two positive terms infinite series
∑∞

n=0
1

(1+2n)
and

∑∞
n=0

1
(5+2n)

,
which are divergent in nature by using the comparison test.
Taking the difference of the above two series, we get

∞∑
n=0

1

(1 + 2n)
−
∞∑
n=0

1

(5 + 2n)
=
∞∑
n=0

4

(1 + 2n)(5 + 2n)
. (2.1)

The right hand side of equation (2.1) is convergent by using the Raabe’s higher ratio test.
In terms of hypergeometric function, the equation (2.1) can be written as

∞∑
n=0

(
1
2

)
n(

3
2

)
n

− 1

5

∞∑
n=0

(
5
2

)
n(

7
2

)
n

=
4

5

∞∑
n=0

(
1
2

)
n

(
5
2

)
n(

3
2

)
n

(
7
2

)
n

,

2F1

 1
2
, 1;

1
3
2
;

− 1

5
2F1

 5
2
, 1;

1
7
2
;

 =
4

5
3F2

 1
2
, 5

2
, 1;

1
3
2
, 7

2
;

 . (2.2)

Since both the Gauss’ series having the positive unit argument on left hand side of equa-
tion (2.2) are divergent. But their difference is convergent.
Multiplying both sides of equation (2.2) by 15

2048
, for application point of view in next

section, we get

Corollary 1. The difference of two divergent Gauss’ series having the positive unit argument
may be convergent
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15

2048
2F1

 1
2
, 1;

1
3
2
;

− 3

2048
2F1

 5
2
, 1;

1
7
2
;

 =
3

512
3F2

 1
2
, 5

2
, 1;

1
3
2
, 7

2
;

 . (2.3)

3. Summation of some infinite series

1.
∞∑
n=0

1

(256n8 + 3072n7 + 15360n6 + 41472n5 + 65568n4 + 61632n3 + 33440n2 + 9600n+ 1125)

=
1

27
− 15π2

4096
. (3.1)

2.
∞∑
n=0

(32n4 + 120n3 + 156n2 + 82n+ 15)
{(

1
2

)
n

}2 (1
3

)
n

(
2
3

)
n

(n!)2(1296n5 + 9072n4 + 24552n3 + 32112n2 + 20341n+ 5005)
(
5
6

)
n

(
7
6

)
n

=
1

54π
√

3
.

(3.2)

3.
∞∑
n=0

(5 + 8n)
(
1
4

)
n+1

{(
1
4

)
n

}3
(n!)4 (n3 + 3n2 + 3n+ 1)

=
64
√

2

27
√
π
[
Γ
(
3
4

)]2 . (3.3)

4.
∞∑
n=0

(8n2 + 10n+ 3)
{(

1
2

)
n

}2 (1
3

)
n

(
2
3

)
n

(n!)2 (216n4 + 684n3 + 750n2 + 317n+ 35)
(
1
6

)
n

(
5
6

)
n

=
1

2π
√

3
. (3.4)

5.
∞∑
n=0

(−1)n+1

(4n6 + 36n5 + 133n4 + 258n3 + 277n2 + 156n+ 36)
= 12`n 2− 23 + 16G. (3.5)

6.
∞∑
n=0

1

(8n3 + 24n2 + 22n+ 6)
= `n 2− 1

2
. (3.6)

7.
∞∑
n=0

1

(36n3 + 108n2 + 107n+ 35)
= −3 +

3

2
`n 3 + 2 `n 2. (3.7)

8.
∞∑
n=0

(1 + n)2

(16n4 + 64n3 + 88n2 + 48n+ 9)
=
π2

64
. (3.8)

9.
∞∑
n=0

(−1)n

(16n4 + 52n3 + 56n2 + 23n+ 3)
=

1

3
`n 2+

π

5

(
2
√

2

3
− 1

)
+

4
√

2

15
`n (1+

√
2)− 1

5
.

(3.9)

Proof of the result (3.1) :
On factorizing the general term of equation (3.1) and making use of partial fractions, we
have

1

(256n8 + 3072n7 + 15360n6 + 41472n5 + 65568n4 + 61632n3 + 33440n2 + 9600n+ 1125)

=
15

2048

(2n+ 1)
+

−7
1024

(2n+ 1)2
+

1
256

(2n+ 1)3
+

−1
64

(2n+ 3)2
+

−15
2048

(2n+ 5)
+

−7
1024

(2n+ 5)2
+

−1
256

(2n+ 5)3
.
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Now taking summation on both sides and n varying from 0 to∞, we get
∞∑
n=0

1

(256n8 + 3072n7 + 15360n6 + 41472n5 + 65568n4 + 61632n3 + 33440n2 + 9600n+ 1125)

=
15

2048

∞∑
n=0

(
1
2

)
n(

3
2

)
n

− 7

1024

∞∑
n=0

(
1
2

)
n

(
1
2

)
n(

3
2

)
n

(
3
2

)
n

+
1

256

∞∑
n=0

(
1
2

)
n

(
1
2

)
n

(
1
2

)
n(

3
2

)
n

(
3
2

)
n

(
3
2

)
n

− 1

576

∞∑
n=0

(
3
2

)
n

(
3
2

)
n(

5
2

)
n

(
5
2

)
n

−

− 3

2048

∞∑
n=0

(
5
2

)
n(

7
2

)
n

− 7

25600

∞∑
n=0

(
5
2

)
n

(
5
2

)
n(

7
2

)
n

(
7
2

)
n

− 1

32000

∞∑
n=0

(
5
2

)
n

(
5
2

)
n

(
5
2

)
n(

7
2

)
n

(
7
2

)
n

(
7
2

)
n

.

Using the definition of generalized hypergeometric function, we get
∞∑
n=0

1

(256n8 + 3072n7 + 15360n6 + 41472n5 + 65568n4 + 61632n3 + 33440n2 + 9600n+ 1125)

=
15

2048
2F1

 1
2
, 1;

1
3
2
;

− 7

1024
3F2

 1
2
, 1

2
, 1;

1
3
2
, 3

2
;

+
1

256
4F3

 1
2
, 1

2
, 1

2
, 1;

1
3
2
, 3

2
, 3

2
;

−
− 1

576
3F2

 3
2
, 3

2
, 1;

1
5
2
, 5

2
;

− 3

2048
2F1

 5
2
, 1;

1
7
2
;

−
− 7

25600
3F2

 5
2
, 5

2
, 1;

1
7
2
, 7

2
;

− 1

32000
4F3

 5
2
, 5

2
, 5

2
, 1;

1
7
2
, 7

2
, 7

2
;

 . (3.10)

Using summation theorems (1.24), (1.27) and corollary (2.3) in equation (3.10), we get
∞∑
n=0

1

(256n8 + 3072n7 + 15360n6 + 41472n5 + 65568n4 + 61632n3 + 33440n2 + 9600n+ 1125)

=
15

4096

{
ψ

(
5

2

)
− ψ

(
1

2

)}
− 7

4096
ψ(1)

(
1

2

)
− 1

4096
ψ(2)

(
1

2

)
−

− 9

2304
ψ(1)

(
3

2

)
− 175

102400
ψ(1)

(
5

2

)
+

125

512000
ψ(2)

(
5

2

)
=

15

4096

{
8

3
− 2`n2− γ − (−2 `n2− γ)

}
− 7

4096

(
π2

2

)
− 1

4096

(
− 14π3

25.79436

)
−

− 9

2304

(
π2

2
− 4

)
− 175

102400

(
π2

2
− 4.4

)
+

125

512000

(
− 14π3

25.79436
+

448

27

)
=

40

4096
+

36

2304
+

7000

921600
+

448

110592
− π2

(
7

8192
+

9

4608
+

175

204800

)
.

On simplifying further, we arrive at the result (3.1).

Proof of the results (3.2) to (3.9):
The proof of results (3.2) to (3.9) can be obtained by following the same procedure as in
the proof of the result (3.1) and making use of Dougall’s theorem (1.28) and other sum-
mation theorems. So we omit the details here.



Functional Analysis 8

4. Representation of infinite series (3.1) to (3.9) in hypergeometric forms

5F4

 1
2
, 1

2
, 1

2
, 5

2
, 1;

1
3
2
, 7

2
, 7

2
, 7

2
;

 =
125

3
− 16875π2

4096
. (4.1)

5F4

 9
4
, 3

2
, 5

2
, 1

3
, 2

3
;

1

2, 5
4
, 17

6
, 19

6
;

 =
1001

162π
√

3
. (4.2)

5F4

 13
8
, 5

4
, 1

4
, 1

4
, 1

4
;

1

2, 2, 2, 5
8
;

 =
256
√

2

135
√
π
[
Γ
(
3
4

)]2 . (4.3)

5F4

 7
4
, 1

2
, 3

2
, 1

3
, 2

3
;

1

2, 3
4
, 11

6
, 13

6
;

 =
35

6π
√

3
. (4.4)

5F4

 1 , 1, 1, 3
2
, 3

2
;

−1

3, 3, 5
2
, 5

2
;

 = 828− 432 `n 2− 576G. (4.5)

4F3

 1, 1, 1
2
, 3

2
;

1

2, 3
2
, 5

2
;

 = 6 `n 2− 3. (4.6)

4F3

 1, 1, 5
6
, 7

6
;

1

2, 11
6
, 13

6
;

 = −105 +
105

2
`n 3 + 70 `n 2. (4.7)

4F3

 1
2
, 1

2
, 2, 2;

1
5
2
, 5

2
, 1;

 =
9π2

64
. (4.8)

4F3

 1, 1, 1
2
, 1

4
;

−1

2, 5
2
, 5

4
;

 = `n 2 +
3π

5

(
2
√

2

3
− 1

)
+

4
√

2

5
`n(1 +

√
2)− 3

5
. (4.9)

Proof of the results (4.1) to (4.9): The proof of results (4.1)to (4.9) can be obtained by using
the definition of generalized hypergeometric function of one variable.,
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5. Conclusion

In this paper, we have obtained the summations of certain infinite series by using partial
fraction and some hypergeometric summation theorems of positive and negative unit
arguments, Digamma, trigamma, tetragamma functions, lower case beta function of one-
variable and other associated functions. We have also obtained some hypergeometric
summation theorems. We conclude this paper with the remark that the summation of
other infinite series can be derived in a same way. Besides presented infinite series
is supposed to find various applications in Numerical Analysis, Statistics and Linear
Programming.
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Hermite, Gauthier-Villars, Paris, 1926.

[4] W.N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, London, 1935.
[5] J. L. Burchnall and T. W. Chaundy, Expansions of Appell’s double hypergeometric functions (II), Quart.

J. Math. Oxford Ser. 12 (1941), 112-128.
[6] J. Dougall, On Vandermonde’s theorem and some more general expansions, Proc. Edinburg Math.

Soc. 25 (1907), 114-132.
[7] A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, Vol. I,

McGraw-Hill Book Company, New York, Toronto and London, 1955.
[8] P. Humbert, The confluent hypergeometriques d’ order superieur a deux variables, C. R. Acad. Sci.

Paris, 173 (1921), 73-96.
[9] Y.L. Luke, The Special Functions and Their Approximations, Vol. I, Academic Press, 1969.

[10] W. Magnus, F. Oberhettinger and R.P.Soni, Some Formulas and Theorems for the Special Functions
of Mathematical Physics, Third Enlarged Edition, Springer-Verlag, New York, 1966.

[11] A.P. Prudnikov, Yu. A. Brychknov and O.I. Marichev, Integrals and Series, Vol. III: More special func-
tions, Nauka Moscow, 1986 (in Russian);(Translated from the Russian by G.G. Gould), Gordon and
Breach Science Publishers, New York, Philadelphia London, Paris, Montreux, Tokyo, Melbourne,
1990.

[12] E.D. Rainville, Special Functions, The Macmillan Co. Inc., New York 1960; Reprinted by Chelsea publ.
Co., Bronx, New York, 1971.

[13] L.J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, New York, 1966.
[14] H.M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier,

2011.
[15] H.M. Srivastava and H.L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Hor-

wood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.


	1. Introduction and preliminaries
	2. Difference of two divergent Gauss' series
	3. Summation of some infinite series
	4. Representation of infinite series (3.1) to (3.9) in hypergeometric forms
	5. Conclusion
	References

