Decomposable Positive Map From $\mathcal{M}_3(\mathbb{C})$ **to** $\mathcal{M}_2(\mathcal{M}_2(\mathbb{C}))$

C. A. Winda ™, N. B. Okelo, P. Omoke

Department of Pure and Applied Mathematics, Jaramogi Oginga Odinga University of Science and Technology, Kenya

ABSTRACT. In most literature, the decomposition of positive maps from \mathcal{M}_3 to \mathcal{M}_2 are discussed where the matrix elements are complex numbers. In this paper we construct a positive maps $\Phi_{(\mu,c_1,c_2)}$ from $\mathcal{M}_3(\mathbb{C})$ to $\mathcal{M}_2(\mathcal{M}_2(\mathbb{C}))$. The Choi matrices for complete positivity and complete copositivity ares visualized as tensor matrix $\mathcal{M}_3 \otimes \mathcal{M}_2$ with $\mathcal{M}_2(\mathbb{C})$ as the entry elements. The construction allow us describe decomposability on positive semidefinite matrices.

1. Introduction

Positive linear maps on C^* -algebras particularly those of finite dimensions have been very important in quantum information theory and quantum channels. Stinespring [6] initiated the concept of completely positive maps with his representation(or dilation) theorem. Arveson in [1] and [2] found the application of completely positive maps in operator theory and further developed extensively in operator algebra and mathematical physics. Woronowicz [11], Theorem 3.1.6 showed that every positive linear map Φ form $\mathcal{M}_2(\mathbb{C})$ to $\mathcal{M}_m(\mathbb{C})$ is decomposable if and only if $m \leq 3$. In [7], [8] and [9] Theorem 1, Størmer gives conditions for decomposability of positive maps; For \mathcal{A} be a C^* -algebra and linear map Φ is decomposable if and only if for all $n \in \mathbb{N}$ whenever (x_{ij}) and (x_{ji}) belong to $\mathcal{M}_n(\mathcal{A})^+$. Choi [4] gave the first example of indecomposable map, for a 3-dimension case.

Yang, Leung and Tang [12] showed that every 2-positive linear map from $\mathcal{M}_3(\mathbb{C})$ to $\mathcal{M}_3(\mathbb{C})$ is decomposable. Though we are motivated by the question in [12] that enquire if there exist indecomposable 2-positive maps from $\mathcal{M}_3(\mathbb{C})$ to $\mathcal{M}_4(\mathbb{C})$), we show there is a decomposable positive map from $\mathcal{M}_3(\mathbb{C})$ to $\mathcal{M}_2(\mathcal{M}_2(\mathbb{C}))$.

In most literature, the authors have studied case \mathcal{M}_3 to \mathcal{M}_2 where the matrix elements are complex numbers. In this paper we construct a positive maps $\Phi_{(\mu,c_1,c_2)}$ from $\mathcal{M}_3(\mathbb{C})$ to \mathcal{M}_2 where the matrix elements of \mathcal{M}_2 is a 2×2 positive matrix $\mathcal{M}_2(\mathbb{C})$. We find conditions on the triplet μ, c_1, c_2 for which the map is positive, completely positive, 2-positive and decomposable.

Date submitted: 2023-10-30.

Key words and phrases. Positive maps, k-positivity, Choi matrix, Completely positivity, Decomposable maps.

This document is the results of the research project of the first author.

A matrix $X \in \mathcal{M}_n(\mathbb{C})$ is called positive semi-definite if it is hermitian and all its eigenvalues are positive. It is denoted as $X \geq 0$. The set of all positive semi-definite matrices in $\mathcal{M}_n(\mathbb{C})$ is denoted by $\mathcal{M}_n(\mathbb{C})^+$. Let the identity map on and the transpose map on $\mathcal{M}_n(\mathbb{C})^+$ be denoted by \mathcal{I}_n and τ_n respectively. A linear map Φ is from $\mathcal{M}_n(\mathbb{C})$ to $\mathcal{M}_m(\mathbb{C})$ is called positive if $\Phi(\mathcal{M}_n(\mathbb{C}))^+ \subseteq \mathcal{M}_m(\mathbb{C})^+$. A map Φ from $\mathcal{M}_n(\mathbb{C})$ to $\mathcal{M}_m(\mathbb{C})$ is k-positive if $\mathcal{I} \otimes \Phi : \mathcal{M}_k \otimes \mathcal{M}_n \longrightarrow \mathcal{M}_k \otimes \mathcal{M}_m$ is positive. On the other hand, Φ from $\mathcal{M}_n(\mathbb{C})$ to $\mathcal{M}_m(\mathbb{C})$ is k-copositive if the map $\tau_n \otimes \Phi : \mathcal{M}_k \otimes \mathcal{M}_n \longrightarrow \mathcal{M}_k \otimes \mathcal{M}_n$ is positive. The Choi result in [3] affirms that the positive map Φ is completely positive if and only if it's Choi matrix is positive semidefinite.

2. Positivity

Let $X \in \mathcal{M}_n(\mathbb{C})$ be a positive semidefinite matrix denoted by $X = [x_i \bar{x}_j]$, where $x_i = (x_1, \dots, x_n)^T \in \mathbb{C}^n$ is a column vector and \bar{x}_j is the transpose conjugate(row vector) of x_i . We denote the diagonal entries $x_n \bar{x}_n$ by α_n .

Let $X \in \mathcal{M}_3$ be a positive semidefinite matrix with complex entries. Let $0 < \mu \le 1$, $c_1, c_2 > 0$ and $r \in \mathbb{N}$. Then we define the family of positive maps $\Phi_{(\mu, c_1, c_2)}$ as follows:

$$\Phi_{(\mu,c_1,c_2)}: \mathcal{M}_3(\mathbb{C})^+ \longrightarrow \mathcal{M}_2(\mathcal{M}_2)\mathbb{C})^+.$$

$$X \mapsto \begin{pmatrix} P_1^{\mu} & -c_1 x_1 \bar{x}_2 & 0 & -\mu x_1 \bar{x}_3 \\ -c_1 x_2 \bar{x}_1 & P_2^{\mu} & -c_2 x_2 \bar{x}_3 & 0 \\ \hline 0 & -c_2 x_3 \bar{x}_2 & P_3^{\mu} & 0 \\ -\mu x_3 \bar{x}_1 & 0 & 0 & P_4^{\mu} \end{pmatrix}, \tag{2.0.1}$$

where

$$P_1^{\mu} = \mu^{-r}(\alpha_1 + c_1\alpha_2\mu^r + c_2\alpha_3\mu^r)$$

$$P_2^{\mu} = \mu^{-r}(\alpha_2 + c_1\alpha_3\mu^r + c_2\alpha_1\mu^r)$$

$$P_3^{\mu} = \mu^{-r}(\alpha_1 + \alpha_2 + \alpha_3)$$

$$P_4^{\mu} = \mu^{-r}(\alpha_3 + c_1\alpha_1\mu^r + c_2\alpha_2\mu^r)$$

The matrix $\Phi_{(\mu,c_1,c_2)}(X)$ is visualized as a 2×2 block matrix in $\mathcal{M}_2(\mathcal{M}_2(\mathbb{C}))$. The linear map Φ is uniquely determined by the polynomial function:

$$F(z,x) := v\Phi(x_i\bar{x}_j)v^T$$

as a biquadratic function in $x := (x_1, x_2, x_3)$ and $v := (v_1, v_2, v_3, v_4)$. The map Φ is positive if and only if the biquadratic form F(z, x) is a sum of squares (positive semi-definite).

We characterize of the positivity of the map Φ for $v=(v_1,v_2,v_3,v_4)\in\mathbb{R}^4$ and $t\in\mathbb{C}$.

Lemma 2.1. Let $0 < \mu < 1$ and $c_1, c_2 \ge 0$. Then the function

$$F(v_1, v_2, v_3, v_4, t) = \mu^{-r} (1 + c_1 \mu^r + c_2 |t| \mu^r) v_1^2 + \mu^{-r} (1 + c_1 |t| \mu^r + c_2 \mu^r) v_2^2 + \mu^{-r} (2 + |t|) v_3^2$$

$$+ \mu^{-r} (|t| + c_1 \mu^r + c_2 \mu^r) v_4^2 - 2c_1 v_1 v_2 - 2c_2 \Re(t) v_2 v_3 - 2\mu \Re(t) v_1 v_4$$

is positive semidefinite for every $v_1, v_2, v_3, v_4 \in \mathbb{R}$ and $t \in \mathbb{C}$ if and only if the following two conditions are satisfied:

$$\mu^{-r} > c_1. \tag{2.0.2}$$

$$\mu^{-r} > c_2. \tag{2.0.3}$$

Proof. If $v_1 = 0$. Then, $F(0, v_2, v_3, v_4, t)$

$$= \mu^{-r}(1+c_1|t|\mu^r+c_2\mu^r)v_2^2 + \mu^{-r}(2+|t|)v_3^2 + \mu^{-r}(|t|+c_1\mu^r+c_2\mu^r)v_4^2 - 2c_2\Re(t)v_2v_3$$

$$= (c_1|t|+c_2)v_2^2 + 2\mu^{-r}v_3^2 + \mu^{-r}(|t|+c_1\mu^r+c_2\mu^r)v_4^2 + (\mu^{-r}v_2^2 - 2v_2v_3c_2\Re(t) + \mu^{-r}|t|v_3^2)$$

$$= (c_1|t|+c_2)v_2^2 + \mu^{-r}(|t|+c_1\mu^r+c_2\mu^r)v_4^2 + \mu^{-r}(v_2 - \mu^rc_2\Re(t)v_3)^2 + (2\mu^{-r} + \mu^{-r}|t| - \mu^rc_2^2\Re(t)^2)v_3^2.$$

 $F(0, v_2, v_3, v_4, t)$ is positive when the coefficient of v_3^2 satisfy the inequality,

$$\mu^{-2r}(2+|t|) - c_2^2 \Re^2(t)^2 > 0. \tag{2.0.4}$$

Letting t = x + iy. We have that,

$$\mu^{-r}(2+|t|) - \mu^{r}c_{2}^{2}\Re^{2}(t)^{2} = 2\mu^{-2r} + (\mu^{-2r}(|x|^{2}+|y|^{2}) - x^{2}c_{2}^{2})$$
$$= 2\mu^{-2r} + \mu^{-2r}|y|^{2} + |x|^{2}(\mu^{-2r} - c_{2}^{2})$$

is positive whenever $\mu^{-r} \geq c_2$ hold.

If
$$v_2 = 0$$
. Then, $F(v_1, 0, v_3, v_4, t)$

$$= \mu^{-r} (1 + c_1 \mu^r + c_2 |t| \mu^r) v_1^2 + \mu^{-r} (2 + |t|) v_3^2 + \mu^{-r} (|t| + c_1 \mu^r + c_2 \mu^r) v_4^2 - 2\mu \Re(t) v_1 v_4$$

$$= \mu^{-r} (c_1 \mu^r + c_2 |t| \mu^r) v_1^2 + \mu^{-r} (2 + |t|) v_3^2 + \mu^{-r} (c_1 \mu^r + c_2 \mu^r) v_4^2 + (\mu^{-r} v_1^2 - 2 v_1 v_4 \mu \Re(t) + \mu^{-r} |t| v_4^2)$$

$$= \mu^{-r} (c_1 \mu^r + c_2 |t| \mu^r) v_1^2 + \mu^{-r} (2 + |t|) v_3^2 + \mu^{-r} (c_1 \mu^r + c_2 \mu^r) v_4^2 + \mu^{-r} (v_1 - \mu^{1+r} \Re(t) v_4)^2 + \mu^{-r} (|t| - \mu^{2+2r} \Re(t)^2) v_4^2$$

$$\geq 0.$$

If $v_3 = 0$. Then, $F(v_1, v_2, 0, v_4, t)$

$$= \mu^{-r}(1+c_1\mu^r+c_2|t|\mu^r)v_1^2 + \mu^{-r}(1+c_1|t|\mu^r+c_2\mu^r)v_2^2 + \mu^{-r}(|t|+c_1\mu^r+c_2\mu^r)v_4^2 - 2c_1v_1v_2$$

$$-2\mu\Re(t)v_1v_4$$

$$= c_2|t|v_1^2 + \mu^{-r}(1+c_2\mu^r)v_2^2 + (c_1+c_2)v_4^2 + (\mu^{-r}v_1^2 - 2v_1v_4\mu\Re(t) + \mu^{-r}|t|v_4^2) + c_1(v_1^2 - 2v_1v_2 + |t|v_2^2)$$

$$= c_2|t|v_1^2 + \mu^{-r}(1+c_2\mu^r)v_2^2 + (c_1+c_2)v_4^2 + \mu^{-r}(v_1-\mu^{1+r}\Re(t)v_4)^2$$

$$+\mu^{-r}(|t|-\mu^{2+2r}\Re(t)^2)v_4^2 + c_1(v_1-v_2)^2 + c_1(|t|^2 - 1)v_2^2$$

 $F(v_1, v_2, 0, v_4, t)$ is positive whenever $\mu^{-r} - c_1 \ge 0$ hold. That is, the coefficients of v_2^2 is such that,

$$\mu^{-r} + c_2 + c_1(|t| - 1) = (\mu^{-r} - c_1) + c_2 + c_1|t| \ge 0.$$
 (2.0.5)

If $v_4 = 0$. Then, $F(v_1, v_2, v_3, 0, t)$

$$= \mu^{-r} (1 + c_1 \mu^r + c_2 |t| \mu^r) v_1^2 + \mu^{-r} (1 + c_1 |t| \mu^r + c_2 \mu^r) v_2^2 + \mu^{-r} (2 + |t|) v_3^2 - 2c_1 v_1 v_2 - 2c_2 \Re(t) v_2 v_3$$

$$= \mu^{-r} (1 + c_2 |t| \mu^r) v_1^2 + c_2 v_2^2 + 2\mu^{-r} v_3^2 + c_1 (v_1^2 - 2v_1 v_2 + |t| v_2^2) + (\mu^{-r} v_2^2 - 2c_2 \Re(t) v_2 v_3 + \mu^{-r} |t| v_3^2)$$

$$= \mu^{-r} (1 + c_2 |t| \mu^r) v_1^2 + c_2 v_2^2 + 2\mu^{-r} v_3^2 + c_1 (v_1 - v_2)^2 + c_1 (|t|^2 - 1) v_2^2 + \mu^{-r} (v_2 - \mu^r c_2 \Re(t) v_3)^2$$

$$+ (\mu^{-r} |t| - \mu^r c_2^2 \Re(t)^2) v_3^2$$

$$\geq 0$$

whenever the inequalities (2.0.4) and (2.0.5) hold.

Now let $v_i \neq 0, i = 1, 2, 3, 4$ and assume that there exist $v_1, v_2, v_3, v_4 \in \mathbb{R}$ and $t \in \mathbb{C}$ such that $v_1 \neq 0$ and $F(v_1, v_2, v_3, v_4, t) < 0$. Since $0 < \mu < 1$ and $c_1, c_2 \geq 0$. Then, $F(v_1, v_2, v_3, v_4, t)$

$$= \mu^{-r}(1+c_1\mu^r+c_2|t|\mu^r)v_1^2+\mu^{-r}(1+c_1|t|\mu^r+c_2\mu^r)v_2^2+\mu^{-r}(2+|t|)v_3^2+\mu^{-r}(|t|+c_1\mu^r+c_2\mu^r)v_4^2\\ -2c_1v_1v_2-2c_2\Re(t)v_2v_3-2\mu\Re(t)v_1v_4$$

$$= \mu^{-r}v_1^2 + \mu^{-r}v_2^2 + 2\mu^{-r}v_3^2 + (c_1 + c_2)\mu^{-r}v_4^2 + c_1(v_1 - v_2)^2 + c_1(|t|^2 - 1)v_2^2 + \mu^{-r}(v_2 - \mu^r c_2\Re(t)v_3)^2 + (\mu^{-r}|t| - \mu^r c_2^2\Re(t)^2)v_3^2 + \mu^{-r}(v_1 - \mu^{1+r}\Re(t)v_4)^2 + (\mu^{-r}|t| - \mu^{2+2r}\Re(t)^2)v_4^2$$

$$< 0$$

is a contradiction when the inequalities (2.0.4) and (2.0.5) hold . Thus $F(v_1,v_2,v_3,v_4,t)\geq 0$ for every $v_1,v_2,v_3,v_4\in\mathbb{R}$ and $t\in\mathbb{C}$

Proposition 2.2. The linear map $\Phi_{(\mu,c_1,c_2)}$ is positive provided Lemma 2.1 is satisfied. are satisfied.

Proof. We need to show that,

$$\Phi\left(\begin{array}{c} q\\ s\\ t \end{array}\right) \quad \left(\begin{array}{cc} \bar{q} & \bar{s} & \bar{t} \end{array}\right) \quad \right) \in \mathcal{M}_4^+$$

for every $q, s, t \in \mathbb{C}$.

Thai is.

$$\begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix}^T \begin{pmatrix} P_1^{\mu} & -c_1 q\bar{s} & 0 & -\mu q\bar{t} \\ -c_1 s\bar{q} & P_2^{\mu} & -c_2 s\bar{t} & 0 \\ \hline 0 & -c_2 t\bar{s} & P_3^{\mu} & 0 \\ -\mu t\bar{q} & 0 & 0 & P_4^{\mu} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix} \ge 0$$
 (2.0.6)

where,

$$P_1^{\mu} = \mu^{-r}(|q|^2 + c_1|s|^2\mu^r + c_2|t|\mu^r)$$

$$P_2^{\mu} = \mu^{-r}(|s|^2 + c_1|t|\mu^r + c_2|q|^2\mu^r)$$

$$P_3^{\mu} = \mu^{-r}(|q|^2 + |s|^2 + |t|)$$

$$P_4^{\mu} = \mu^{-r}(|t| + c_1|q|^2\mu^r + c_2|s|^2\mu^r)$$

for every $v_1, v_2, v_3, v_4 \in \mathbb{R}$ and $q, s, t \in \mathbb{C}$.

Taking q = s = 0.

$$F(v_1, v_2, v_3, v_4, t) = c_1 \mu^{-r} |t| v_1^2 + c_1 |t| v_2^2 + \mu^{-r} |t| v_3^2 + \mu^{-r} |t| v_4^2 \ge 0.$$

If
$$q=0$$
. Since $0<\mu\leq 1$, by inequality (2.0.4),
$$F(v_1,v_2,v_3,v_4,t)$$

$$= (c_1+c_2|t|)v_1^2+\mu^{-r}(1+c_1|t|)v_2^2+\mu^{-r}(1+|t|)v_3^2+(\mu^{-r}|t|+c_2)v_4^2-2c_2\Re(t)v_2v_3$$

If
$$s = 0$$
,

$$F(v_1, v_2, v_3, v_4, t)$$

$$= \mu^{-r} (1 + c_2|t|) v_1^2 + (c_1|t| + c_2) v_2^2 + \mu^{-r} (1 + |t|) v_3^2 + \mu^{-r} (|t| + c_1 \mu^r) v_4^2 - 2\mu \Re(t) v_1 v_4$$

$$= c_2|t| v_1^2 + (c_1|t| + c_2) v_2^2 + \mu^{-r} (1 + |t|) v_3^2 + c_1 v_4^2 + \mu^{-r} (v_1 - \mu^{1+r} \Re(t) v_4)^2 + (\mu^{-r}|t| - \mu^{2+r} \Re(t)^2) v_4^2$$

$$\geq 0.$$

If q and s are not equal to zero. Assume that q = s = 1. Then, by Lemma 2.1

$$z^{T}\Phi\left(\begin{array}{c} \begin{pmatrix} 1\\1\\t \end{pmatrix} & \begin{pmatrix} 1&1&\bar{t} \end{pmatrix} \right)z \geq 0$$

since the polynomial,

 $\geq 0.$

$$F(v_{1}, v_{2}, v_{3}, v_{4}, t)$$

$$= \mu^{-r}(1 + c_{1}\mu^{r} + c_{2}|t|\mu^{r})v_{1}^{2} + \mu^{-r}(1 + c_{1}|t|\mu^{r} + c_{2}\mu^{r})v_{2}^{2} + \mu^{-r}(2 + |t|)v_{3}^{2}$$

$$+ \mu^{-r}(|t| + c_{1}\mu^{r} + c_{2}\mu^{r})v_{4}^{2} - 2c_{1}v_{1}v_{2} - 2c_{2}\Re(t)v_{2}v_{3} - 2\mu\Re(t)v_{1}v_{4}$$

$$= \mu^{-r}v_{1}^{2} + \mu^{-r}v_{2}^{2} + c_{1}(v_{1} - v_{2})^{2} + c_{1}(|t|^{2} - 1)v_{2}^{2} + (2\mu^{-r} + \mu^{-r}|t| - \mu^{r}c_{2}^{2}\Re(t)^{2})v_{3}^{2}$$

$$+ \mu^{-r}(v_{2} - \mu^{r}c_{2}\Re(t)v_{3})^{2} + \mu^{-r}(v_{1} - \mu^{1+r}\Re(t)v_{4})^{2} + (\mu^{-r}(c_{1} + c_{2} + |t|)$$

$$- \mu^{2+2r}\Re(t)^{2})v_{4}^{2}$$

$$\geq 0$$

for every $v = (v_1, v_2, v_3, v_4) \in \mathbb{R}^4$ and $t \in \mathbb{C}$

3. COMPLETE (CO)POSITIVITY

The structure of the Choi matrix $C_{\Phi_{(\mu,c_1,c_2)}} \in \mathcal{M}_3(\mathcal{M}_2(\mathcal{M}_2))$ is visualized as a block matrix whose entries are 2×2 matrices within the 6×6 matrix.

Proposition 3.1. Let $\psi_{(\mu,c_1,c_2)}$ a positive map. The following are equivalent:

- (i) $\Phi_{(\mu,c_1,c_2)}$ is completely positive,
- (ii) $\Phi_{(\mu,c_1,c_2)}$ is 2-positive and,
- (iii) $\mu^{-2r} > c_1^2 + c_2^2$.

Proof. $(ii) \Rightarrow (iii)$.

Assume $\Phi_{(\mu,c_1,c_2)}$ is 2-positive. Then,.

in $\mathcal{M}_2(\mathcal{M}_2 \otimes \mathcal{M}_2)$ is positive semidefinite. Therefore,

$$\begin{vmatrix} \mu^{-r} & -c_1 & 0 & -\mu \\ -c_1 & \mu^{-r} & -c_2 & 0 \\ 0 & c_2 & \mu^{-r} & 0 \\ -\mu & 0 & 0 & \mu^{-r} \end{vmatrix} \ge 0$$
(3.0.2)

By calculation of minors, $\mu^{-r} > c_1$ and $\mu^{-2r} > c_1^2 + c_2^2$ are necessary conditions for 2-positivity of $\Phi_{(\mu,c_1,c_2)}$.

$$(iii) \Rightarrow (i).$$

The Choi matrix is

in $\mathcal{M}_3(\mathcal{M}_2 \otimes \mathcal{M}_2)$.

Recall that complete positivity of $\Phi_{(\mu,c_1,c_2)}$ is equivalent to positive definiteness [3] of $C_{\Phi_{(\mu,c_1,c_2)}}$. Since (iii) is satisfied, the inequality (3.0.2) holds, and consequently $C_{\Phi_{(\mu,c_1,c_2)}}$ is positive definite. Hence, complete positivity of $\psi_{(\mu,c_1,c_2)}$ follows. (i) \Rightarrow (ii).

It follows from Proposition 3.1 that 2-positivity of $\Phi_{(\mu,c_1,c_2)}$ implies complete positivity.

The Partial Positive transposition is operated with respect to the blocks \mathcal{M}_2 as the entry elements of the matrix $\mathcal{M}_3(\mathcal{M}_2)$. This leads to the Choi matrix $C^{\Gamma}_{\Phi(\mu,c_1,c_2)} \in \mathcal{M}_3(\mathcal{M}_2)$ with the structure given in the next proposition.

Proposition 3.2. Let $\psi_{(\mu,c_1,c_2)}$ be a positive map. Then following conditions are equivalent:

- (i) $\Phi_{(\mu,c_1,c_2)}$ is completely copositive,
- (ii) $\Phi_{(\mu,c_1,c_2)}$ is 2-copositive and,
- (iii) $c_1 \mu^{-r} \ge c_2^2$

Proof. $(ii) \Rightarrow (iii)$.

Assume $\Phi_{(\mu,c_1,c_2)}$ is 2-copositive. Then,

in $\mathcal{M}_2(\mathcal{M}_2 \otimes \mathcal{M}_2)$ is positive semidefinite with the minors positive when conditions in (iii) holds.

 $(iii) \Rightarrow (i)$

The choi matrix,

(3.0.5)

in $\mathcal{M}_3(\mathcal{M}_2\otimes\mathcal{M}_3)$. Since (iii) is satisfied, by calculation of the minor, $C^{\Gamma}_{\Phi_{(\mu,c_1,c_2)}}$ is positive semidefinite when $\mu^{-r}\geq c_1$ holds. Hence, complete copositivity follows.

 $(i) \Rightarrow (ii)$ follows from Proposition 2.2 that 2-positivity of $\Phi_{(\mu,c_1,c_2)}$ implies complete positivity.

Example 3.3. When $r = 3, \mu = \frac{1}{2}, c_1 = 1$ and $c_2 = 2$. Then,

with eigenvalues

 $\{10.2477, 8.4449, 8., 8., 7.5551, 5.75232, 2., 2., 2., 1., 1., 1.\}$

and

with eigenvalues

 $\{9., 8.03553, 8., 8., 8., 7., 4., 2., 1., 1., 0.964466, 0.\}$

.

4. Decomposability of $\Phi_{(\mu,c_1,c_2)}$

A positive linear map is decomposable if it is the sum of a completely positive linear map and a completely copositive linear map. The result of Choi [3] shows that a positive linear map Φ from \mathcal{M}_n to \mathcal{M}_m is decomposable if and only if there exist $n \times m$ matrices v_i and W_j such that,

$$\Phi(X) = V_i X V_i^* + W_j X^T W_j^*$$

for every X in \mathcal{M}_n , where T is the transpose of X.

Proposition 4.1. The linear map $\Phi_{(\mu,c_1,c_2)}$ is decomposable.

Proof. Let $\eta, \xi \in (0,1)$ and $a_i, b_i \in \mathbb{R}^+$ for i=1,2 such that $\eta^{-r} + \xi^{-r} = \mu^{-r}$ and $a_i + b_i = c_i$. We show that there exist 2-positive map $\Phi_{(\eta,a_1,a_2)}$ and 2-copositive map $\Phi_{(\xi,b_1,b_2)}$ whose sum is $\Phi_{(\mu,c_1,c_2)}$. Let $C_{\Phi_{(\mu,c_1,c_2)}}$ be

1	$\eta^{-r} + \xi^{-r}$					$-(a_1+b_1)$						$-q\mu$	
- 1		(a_2+b_2)											
	•		$\eta^{-r} + \xi^{-r}$							$-(1-q)\mu$			
		•		(a_1+b_1)		•			•	•			
	•				$(a_1 + b_1)$	•			•	•		•	
	$-(a_1+b_1)$					$\eta^{-r} + \xi^{-r}$				•	$-a_2$		(4.0.1)
	•						$\eta^{-r} + \xi^{-r}$						(4.0.1)
		•		•		•		(a_2+b_2)	$-b_2$	•			
		•						$-b_2$	$(a_2 + b_2)$	•			
			$-(1-q)\mu$	•						$(a_1+b_1).$			
-	•					$-a_2$					$\eta^{-r} + \xi^{-r}$		
'	$-q\mu$	•		•		•	•		•	٠	•	$\eta^{-r} + \xi^{-r}$	

in $\mathcal{M}_3(\mathcal{M}_2(\mathcal{M}_2)\mathbb{C})$ give be the sum of;

and

	$\int \xi^{-r}$					$-b_1$.				. \
		b_2				•						
	•		ξ^{-r}			•				$-(1-q)\mu$		
			•	b_1		•						·
	•		•		b_1	•						·
$C_{\Phi} =$	$-b_1$					ξ^{-r}						
$C_{\Phi(\xi,b_1,b_2)} =$						•	ξ^{-r}					· ·
			•			•		b_2	$-b_2$			
	•		•			•		$-b_2$	b_2			
	•		$-(1-q)\mu$			•				b_1 .		
	•					•					ξ^{-r}	·
	\ .					•						ξ^{-r} /

When q=1. Then, from the Choi matrices $C_{\Phi(\eta,a_1,a_2)}$ and $C_{\Phi(\xi,b_1,b_2)}$ the linear maps $\Phi(\eta,a_1,a_2)$ is completely positive and $\Phi(\xi,b_1,b_2)$ is completely copositive. On the other hand, when q=0. Then $\Phi(\eta,a_1,a)$ is completely copositive and $\Phi(\xi,b_1,b_2)$ is completely positive. Hence, $\Phi(\mu,c_1,c_2)$ is decomposable.

5. CONCLUSION

It is known that every positive linear map Φ form $\mathcal{M}_2(\mathbb{C})$ to $\mathcal{M}_m(\mathbb{C})$ is decomposable if and only if $m \leq 3$. The map $\Phi_{(\mu,c_1,c_2)}$ from $\mathcal{M}_3(\mathbb{C})$ to $\mathcal{M}_2(\mathcal{M}_2(\mathbb{C}))$ is also decomposable with 2×2 matrices as the entry elements of the Choi matrix in $\mathcal{M}_3(\mathcal{M}_2)(\mathbb{C})$. However, a look at the example by Woronowicz [11] and Tang' [10] of a map from $\mathcal{M}_2(\mathbb{C})$ to $\mathcal{M}_4(\mathbb{C})$ when approached as a map from $\mathcal{M}_2(\mathbb{C})$ to $\mathcal{M}_2(\mathcal{M}_2(\mathbb{C}))$ fails to be decomposable with 2×2 matrices as the elements of it's Choi matrix. Note that the decomposition of these maps is not unique.

DECLARATION OF COMPETING INTEREST

There is no competing interest.

ACKNOWLEDGMENT

We are grateful to the anonymous referees for their suggestions that helped us improve the paper.

REFERENCES

- [1] W. B. Arveson, Sub-algebra of C*-algebra, Acta Math. 128 (1969), 141-224.
- [2] W. B. Arveson, Sub-algebra II, Acta Math. 128 (1972), 271-306.
- [3] M-D. Choi, Completely positive maps on complex matries. Linear Algebra Appl. 10 (1975), 285-290.
- [4] M-D. Choi, Positive semidefinite biquadratic Forms. Linear Algebra Appl. 12 (1975), 95-1005.
- [5] W. A. Majewski, M. Marciniak, Decomposability of extremal positive unit all maps On $\mathcal{M}_2(\mathbb{C})$. Quant. Prob. Banach Center Publ. 73 (2006), 347-356.
- [6] W. F. Stinespring, Positive functions on C^* -algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216.
- [7] E. Stømer, Decomposablepositive maps on C*-algebras, Proc. Amer. Math. Soc. 86 (1982), 402-404, .
- [8] E. Stømer, Positive Linear maps of operator algebra, Acta Math. 110 (1963), 233-278.
- [9] E. Stømer, Positive Linear maps on operator algebra, Springer, (2013).
- [10] W. Tang, On positive linear maps between matrix algebras, Linear Algebra Appl. 79 (1986), 33-44.
- [11] S. L. Woronowicz, Positive maps of low dimensional matrix algebras. Rep. Math. Phys. 10 (1976), 165-183.
- [12] Y. Yang, D. H. Leung, W. Tang, All 2-positive linear maps from $\mathcal{M}_3(\mathbb{C})$ to $\mathcal{M}_3(\mathbb{C})$ are decomposable. Linear Algebra Appl. 503 (2016), 233-247.