Well-Posedness for Rational Contraction On b-Metric Spaces

Taieb Hamaizia ⊠

Laboratory of dynamical systems and control, Department of Mathematics and Informatics, Larbi Ben M'Hidi University, Oum-El-Bouaghi, 04000, Algeria

ABSTRACT. The purpose of the present paper is to prove a new fixed point theorem for self mapping satisfying a generalized contractive conditions on complete b-metric spaces. We also study the well-posedness of a fixed point problem.

1. INTRODUCTION AND PRELIMINARIES

Metric fixed point theory is a very extensive area of analysis with various applications. It is well known that the Banach contraction principle (1922 [4]) is fundamental in fixed point theory, it guarantees the existence and uniqueness of a fixed point for certain self-mapping in metric spaces.

Another direction, the notion of *b*-metric space was introduced by Bakhtin [3] and Cz-erwik [8] by replacing the triangular inequality by a rectangular one, This notion was the starting point for developing the fixed point theory in b-metric space with a view of generalizing the Banach contraction mapping theorem. Recently, many interesting fixed point theorems are proved in the framework of *b*-metric spaces, (see [6–11,13–15,18,19]) In the sequel, We give some definitions and results which will be useful in this paper.

Definition 1.1. ([3,8]) Let X be a nonempty set. A function $d: X \times X \to \mathbb{R}^+$ is called a b-metric with coefficient $s \ge 1$ if it satisfies the following properties for each $x, y, z \in X$

- (1) d(x, y) = 0 if and only if x = y;
- (2) d(x,y) = d(y,x);
- (3) $d(x,z) \le s[d(x,y) + d(y,z)].$

Then the pair (X, d) is called a b-metric space.

Rermark 1.1. Every metric space is b-metric space with s = 1, but b-metric space need not necessarily be a metric space and the class of b-metric spaces is larger than the class of metric spaces.

The most interesting example of b-metric is the following.

Example 1.1. ([5, 12])

Date submitted: 2022-08-19.

2020 Mathematics Subject Classification. 35B40, 74F05, 74F20, 93D15, 93D20.

Key words and phrases. Fixed points;, self mapping, contraction, *b*-metric spaces.

(1) Let $X := l_p(\mathbb{R})$ with $0 where <math>l_p(\mathbb{R}) := \{\{x_n\} \subset \mathbb{R} : \sum_{n=1}^{\infty} |x_n|^p < \infty\}$. Define $d: X \times X \to \mathbb{R}^+$ as:

$$d(x,y) = \left(\sum_{n=1}^{\infty} |x_n - y_n|^p\right)^{1/p}$$

where $x = x_n, y = y_n$. Then d is a b-metric space with coefficient $s = 2^{1/p}$.

(2) Let $L_p([0,1]) = \{f: [0,1] \longrightarrow \mathbb{R} : \|f\|_{L_p([0,1])} < \infty\}, (0 < p < 1)$ and

$$||f||_{L_p([0,1])} = \left(\int_0^1 |f(x)|^p dx\right)^{\frac{1}{p}}.$$

Denote $X = L_p([0,1])$, define a mapping $d: X \times X \to \mathbb{R}^+$ by

$$d(x,y) = \left(\int_0^1 |f(x) - g(x)|^p dx \right)^{\frac{1}{p}}.$$

Then d is a b-metric space with coefficient $s = 2^{1/p}$.

Definition 1.2. [13] Let (X, d) be a b-metric space and $\{x_n\}$ a sequence in X. We say that:

- (1) $\{x_n\}$ converges to x if $d(x_n, x) \to 0$, as $n \to +\infty$,
- (2) $\{x_n\}$ is Cauchy sequence if $d(x_n, x_m) \to 0$, as $n, m \to +\infty$,
- (3) (X, d) is complete if every Cauchy sequence in X is convergent.

Each convergent sequence in a *b*-metric space has a unique limit and it is also a Cauchy sequence. Moreover, in general, a *b*-metric is not necessarily continuous. The following example illustrates this claim.

Example 1.2. [13] Let $X = \mathbb{N} \cup \{\infty\}$. We define a mapping $d: X \times X \longrightarrow \mathbb{R}^+$ as follows:

$$d(m,n) = \begin{cases} 0 & \text{if } m = n \\ \left| \frac{1}{m} - \frac{1}{n} \right| & \text{if one of } m, n \text{ is even and the other is even or } \infty \\ 5 & \text{if one of } m, n \text{ is odd and the other is odd or } \infty \\ 2 & \text{otherwise } m = n. \end{cases}$$

Then (X,d) is a b-metric space with coefficient $s=\frac{5}{2}$. However, let $x_n=2n$ for each $n\in\mathbb{N}$. Then $\lim_{n\to\infty}d(2n,\infty)=\lim_{n\to\infty}\frac{1}{2n}=0$, that is, $x_n\to\infty$, but $d(x_n,1)=2\not\to 5=d(\infty,1)$ as $n\to\infty$.

Proposition 1.1. [6] In a b-metric space (X, d), the following assertions hold:

- A convergent sequence has a unique limit;
- Each convergent sequence is Cauchy;
- A metric space (X, d) is complete if every Cauchy sequence is convergent in X.

Definition 1.3. [21] Let (X, d) be a metric space and $T: X \to X$ a mapping. The fixed point problem of T is said to be well-posed if

(i) T has a unique fixed point z in X.

(ii) For any sequence $\{y_n\}$ in X such that $\lim_{n\to\infty} d(Ty_n, y_n) = 0$, we have $\lim_{n\to\infty} d(y_n, z) = 0$.

Definition 1.4. [23] Let (X, d) be a b-metric space with the coefficient $s \ge 1$ and let $T: X \to X$ be a given mapping. We say that T is continuous at $u \in X$ if for every sequence (x_n) in X, we have $x_n \to u$ as $n \to \infty$ then $Tx_n \to Tu$ as $n \to \infty$. If T is continuous at each point $u \in X$, then we say that T is continuous on X.

Definition 1.5. [21] Let (X, d) be a metric space and $T: X \to X$ a mapping. The fixed point problem of T is said to be well-posed if

- i) T has a unique fixed point u in X.
- ii) for any sequence $\{y_n\}$ in X such that $\lim_{n\to\infty} d(Ty_n, y_n) = 0$, we have $\lim_{n\to\infty} d(y_n, u) = 0$.

Lemma 1.1. [20] Let (X, d) be a complete b-metric space and let $\{x_n\}$ be a sequence in X such that

$$d(x_{n+1}, x_{n+2}) \le \lambda d(x_n, x_{n+1})$$
, for all $n = 0, 1, 2, ...$

where $0 \le \lambda < 1$. Then $\{x_n\}$ is a Cauchy sequence in X.

2. Mains results

Firstly, we have the following useful lemmas

Lemma 2.1. Let (X,d) be a complete b-metric space and let $\{x_n\}$ be a sequence in X such that

$$d(x_{n}, x_{n+1}) \leq \beta_{n} d(x_{n-1}, x_{n}), \text{ for all } n = 1, 2, 3, \dots$$

$$where \ 0 \leq \beta_{n} = \frac{d(x_{n-1}, x_{n}) + d(x_{n}, x_{n+1})}{d(x_{n-1}, x_{n}) + d(x_{n}, x_{n+1}) + 1}.$$

$$Then$$

$$(2.1)$$

- (1) $\beta_n < 1$ for all $n = 1, 2, 3, \ldots$;
- (2) $d(x_n, x_{n+1}) < d(x_{n-1}, x_n)$ for all n = 1, 2, 3, ...;
- (3) $\{x_n\}$ is a Cauchy sequence in X.

Proof. (1) Assume that $x_n \neq x_{n+1}$ for each $n \geq 1$, and let $d_{n-1} = d(x_{n-1}, x_n)$, can be written as

$$\beta_n = \frac{d_{n-1} + d_n}{d_{n-1} + d_n + 1},$$

we show that $\beta_n < 1$, for all n > 0.

Observe that

$$0 \le d_{n-1} + d_n < d_{n-1} + d_n + 1,$$

we conclude that

$$\frac{d_{n-1} + d_n}{d_{n-1} + d_n + 1} = \beta_n < 1. {(2.2)}$$

Using (2.1) and (2.2), it follows that

$$d_n \le \beta_n d_{n-1} < d_{n-1}, \text{ for all } n > 0,$$
 (2.3)

and also

$$d_{n-1} \le \beta_{n-1} d_{n-2} < d_{n-2}, \text{ for all } n > 1.$$
 (2.4)

From (2.3) and (2.4), we find that

$$d_n < d_{n-2}$$
.

So, by the above inequality we get

$$0 < d_n + d_{n-1} < d_{n-1} + d_{n-2},$$

and

$$0 < d_n + d_{n-1} + 1 < d_{n-1} + d_{n-2} + 1,$$

hence

$$\frac{d_n+d_{n-1}}{d_n+d_{n-1}+1}<\frac{d_{n-1}+d_{n-2}}{d_{n-1}+d_{n-2}+1},$$

is equivalent to $\beta_n < \beta_{n-1}$, continuing this process, we get

$$\beta_n < \beta_{n-1} < \dots < \beta_1$$
.

Accordingly, by Lemma 2.1 with $\lambda = \beta_1 < 1$, then $\{x_n\}$ is a Cauchy sequence in X.

Now, we shall state and prove our main results

Theorem 2.1. Let (X, d) be a complete b-metric space with a coefficient $s \ge 1$ and $T: X \to X$ be self maps satisfying, for all $x, y \in X$

$$sd(Tx, Ty) \le \frac{d(x, Tx) + d(y, Ty)}{d(x, y) + d(y, Ty) + 1} \times \max \left\{ d(x, y), d(x, Tx), d(y, Ty), \frac{d(x, Ty) + d(y, Tx)}{2s} \right\},$$
(2.5)

Then, T has a unique fixed point in X and the fixed point problem of T is well-posed.

Proof. **Step 1 existences**

For any arbitrary point, $x_0 \in X$. Define the sequence $\{x_n\}$ in X such that

$$x_{n+1} = Tx_n$$
, for all $n \in \mathbb{N}$.

If $x_{n_0} = x_{n_0+1} = Tx_{n_0}$ for some $n_0 \in \mathbb{N}$, then $u = x_{n_0}$ forms a fixed point for T that the proof finishes. Consequently, from now on, we assume that

$$x_{n+1} \neq x_n$$

First, we will show that $\{x_n\}$ is a Cauchy sequence in X. Employing the inequality (2.5), we have

$$sd(x_{n}, x_{n+1}) = d(Tx_{n-1}, Tx_{n})$$

$$\leq \frac{d(x_{n-1}, Tx_{n-1}) + d(x_{n}, Tx_{n})}{d(x_{n-1}, x_{n}) + d(x_{n}, Tx_{n}) + 1}$$

$$\times \max \left\{ d(x_{n-1}, x_{n}), d(x_{n-1}, Tx_{n-1}), d(x_{n}, Tx_{n}), \frac{d(x_{n-1}, Tx_{n}) + d(x_{n}, Tx_{n-1})}{2s} \right\}$$

$$= \frac{d(x_{n-1}, x_{n}) + d(x_{n}, x_{n+1})}{d(x_{n-1}, x_{n}) + d(x_{n}, x_{n+1}) + 1}$$

$$\times \max \left\{ d(x_{n-1}, x_{n}), d(x_{n-1}, x_{n}), d(x_{n}, x_{n+1}), \frac{d(x_{n-1}, x_{n+1}) + d(x_{n}, x_{n})}{2s} \right\}$$

$$= \frac{d(x_{n-1}, x_{n}) + d(x_{n}, x_{n+1})}{d(x_{n-1}, x_{n}) + d(x_{n}, x_{n+1}) + 1}$$

$$\times \max \left\{ d(x_{n-1}, x_{n}), d(x_{n}, x_{n+1}), \frac{d(x_{n-1}, x_{n+1})}{2s} \right\}$$

$$\leq \frac{d(x_{n-1}, x_{n}) + d(x_{n}, x_{n+1})}{d(x_{n-1}, x_{n}) + d(x_{n}, x_{n+1}) + 1}$$

$$\times \max \left\{ d(x_{n-1}, x_{n}) + d(x_{n}, x_{n+1}), \frac{s[d(x_{n-1}, x_{n}) + d(x_{n}, x_{n+1})]}{2s} \right\}$$

$$= s \frac{d(x_{n-1}, x_{n}) + d(x_{n}, x_{n+1})}{d(x_{n-1}, x_{n}) + d(x_{n}, x_{n+1}) + 1} d(x_{n-1}, x_{n}), \tag{2.6}$$

then

$$d(x_n, x_{n+1}) \le \frac{\beta_n}{s} d(x_{n-1}, x_n),$$

where

$$\beta_n = \frac{d(x_{n-1}, x_n) + d(x_n, x_{n+1})}{d(x_{n-1}, x_n) + d(x_n, x_{n+1}) + 1}.$$

Applying Lemma 2.1, we deduce that $\{x_n\}$ is a Cauchy sequence. Since (X,d) is complete, there exists a point $u \in X$ such that $\lim_{n \to \infty} x_n = u$.

Next, we will prove that Tu = u.

Therefore, using (2.5), we have

$$sd(Tx_n, Tu)$$

$$\leq \frac{d(x_n, Tx_n) + d(u, Tu)}{d(x_n, u) + d(u, Tu) + 1} \max \left\{ d(x_n, u), d(x_n, Tx_n), d(u, Tu), \frac{d(x_n, Tu) + d(u, Tx_n)}{2s} \right\},\,$$

Taking the limit as $n \to +\infty$, we obtain that

$$d(u, Tu) \le \frac{d(u, Tu)^2}{s \left[d(u, Tu) + 1\right]}$$

$$< d(u, Tu).$$

Therefore, u is a fixed point of T.

Step 2 uniqueness

For the uniqueness, we assume that $u \neq v$ is another fixed point of T.

From the inequality (2.5), we find

$$\begin{split} sd(u,v) &= sd(Tu,Tv) \\ &\leq \frac{d(u,Tu) + d(v,Tv)}{d(u,v) + d(v,Tv) + 1} \max \left\{ d(u,v), d(u,Tu), d(v,Tv), \frac{d(u,Tv) + d(v,Tu)}{2s} \right\} \\ &= 0. \end{split}$$

This means

$$d(u,v) = 0.$$

Step 3

Let $\{y_n\}$ be a sequence in X such that $\lim_{n\to\infty} d(Ty_n,y_n)=0$. We have

$$d(y_n, u) \le s [d(y_n, Ty_n) + d(Ty_n, Tu)].$$
 (2.7)

Using the inequality (2.5), we get

 $sd\left(Ty_{n},Tu\right)$

$$\leq \frac{d(y_n, Ty_n) + d(u, Tu)}{d(y_n, u) + d(u, Tu) + 1} \times \max \left\{ d(y_n, u), d(y_n, Ty_n), d(u, Tu), \frac{d(y_n, Tu) + d(u, Ty_n)}{2s} \right\}$$

$$\leq \frac{d(y_n, Ty_n) + 0}{d(y_n, u) + 1}$$

$$\times \max \left\{ d(y_n, u), d(y_n, Ty_n), 0, \frac{s[d(y_n, u) + d(u, Tu)] + s[d(u, Tu) + d(Tu, Ty_n)]}{2s} \right\}.$$

Therefore

$$sd(Ty_n, Tu) \le \frac{d(y_n, Ty_n)}{d(y_n, u) + 1} \max \left\{ d(y_n, u), d(y_n, Ty_n), \frac{d(y_n, u) + d(Tu, Ty_n)}{2} \right\}.$$
 (2.8)

Then passing to the limit

$$s \lim_{n \to \infty} d\left(Ty_n, Tu\right) = 0,$$

from 2.7, we conclude

$$\lim_{n\to\infty}d\left(y_n,u\right)=0.$$

That is the fixed point problem of *T* is well-posed. This completes the proof.

The following corollaries can be deduced as particular cases of the main theorem.

Corollary 2.1. Let (X, d) be a complete b-metric space with a coefficient $s \ge 1$ and $T: X \to X$ be self maps satisfying, for all $x, y \in X$

$$sd(Tx, Ty) \le \frac{d(x, Tx) + d(y, Ty)}{d(x, y) + d(y, Ty) + 1}d(x, y), \tag{2.9}$$

Then, T has a unique fixed point in X and the fixed point problem of T is well-posed.

Proof. Take
$$\max\left\{d(x,y),d(x,Tx),d(y,Ty),\frac{d(x,Ty)+d(y,Tx)}{2s}\right\}=d(x,y)$$
 in Theorem 2.1.

Corollary 2.2. Let (X, d) be a complete metric space and $T: X \to X$ be self maps satisfying, for all $x, y \in X$

$$d(Tx, Ty) \le \frac{d(x, Tx) + d(y, Ty)}{d(x, y) + d(y, Ty) + 1} \times \max \left\{ d(x, y), d(x, Tx), d(y, Ty), \frac{d(x, Ty) + d(y, Tx)}{2} \right\},$$
(2.10)

Then, T has a unique fixed point in X and the fixed point problem of T is well-posed

Proof. Take s = 1 in Theorem 2.1

REFERENCES

- [1] Abbas, M., Hussain, N., Rhoades, B. E. (2011). Coincidence point theorems for multivalued f-weak contraction mappings and applications. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 105(2), 261-272.
- [2] Aydi, H., Abbas, M., Vetro, C. (2012). Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces. Topology and its Applications, 159(14), 3234-3242.
- [3] Bakhtin, I.A. (1989). The contraction mapping principle in quasimetric spaces (Russian), Func. An. Gos. Ped. Inst. Unianowsk, 30, 26-37.
- [4] Banach, S. (1922). Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math, 3(1), 133-181.
- [5] Berinde, V. (1993), Generalized contractions in quasimetric spaces. *In Seminar on Fixed Point Theory. Babes-Bolyai University. Cluj-Napoca. Romania*, 3-9.
- [6] Boriceanu, M., Bota, M., Petruşel, A. (2010). Multivalued fractals in b-metric spaces. Central European Journal of Mathematics, 8(2), 367-377.
- [7] Boriceanu, M. (2009). Fixed point theory for multivalued generalized contraction on a set with two b-metrics. Studia Universitatis Babes-Bolyai, Mathematica, (3), 1-14.
- [8] Czerwik, S. (1993). Contraction mappings in *b*-metric spaces. Acta mathematica et informatica universitatis ostraviensis, 1(1), 5-11.
- [9] Czerwik, S. (1998). Nonlinear set-valued contraction mappings in b-metric spaces. Atti Sem. Mat. Fis. Univ. Modena, 46, 263-276.
- [10] Hamaizia, T., Aliouche, A. (2021). A nonunique common fixed point theorem of Rhoades type in b-metric spaces with applications. International Journal of Nonlinear Analysis and Applications, 12(2), 399-413.
- [11] Hamaizia, T., Murthy, P. P. (2021). Z-contraction condition involving simulation function in b-metric space under fixed points considerations. Mathematica Moravica, 25(2), 43-52.
- [12] Heinonen, J. (2001). Lectures on analysis on metric spaces. Springer Science & Business Media.
- [13] Huang, H., Deng, G., Radenovic, S. (2018). Fixed point theorems in b-metric spaces with applications to differential equations. Journal of Fixed Point Theory and Applications, 20(1), 1-24.
- [14] Huang, H., Deng, G., Radenovic, S. (2017). Fixed point theorems for C-class functions in b-metric spaces and applications. J. Nonlinear Sci. Appl, 10, 5853-5868.
- [15] Hussain, N., Mitrovic, Z. D. (2017). On multi-valued weak quasi-contractions in b-metric spaces. J. Nonlinear Sci. Appl, 10(7), 3815-3823.
- [16] Jovanovic, M., Kadelburg, Z., Radenovic, S. (2010). Common fixed point results in metric-type spaces. Fixed Point Theory and Applications, 2010, 1-15.
- [17] Kutbi, M. A., Karapınar, E., Ahmad, J., Azam, A. (2014). Some fixed point results for multi-valued mappings in b-metric spaces. Journal of Inequalities and Applications, 2014(1), 1-11.

[18] Seddik, M., Taieb, H. (2021). Some fixed point theorems of rational type contraction in-metric spaces. Moroccan Journal of Pure and Applied Analysis, 7(3), 350-363.

- [19] Merdaci, S., Hamaizia, T. (2021) Some generalization of unique fixed point theorems for multivalued mappings in b-metric spaces, U.P.B. Sci. Bull., Series A., 83(4), 350–363.
- [20] Miculescu, R., Mihail, A. (2017). New fixed point theorems for set-valued contractions in b-metric spaces. Journal of Fixed Point Theory and Applications, 19(3), 2153-2163.
- [21] Reich, S., Zaslavski, A. J. (2001). Well-posedness of fixed point problems, Far East Journal of Mathematical Science, 2001, 393-401.
- [22] Roshan, J. R., Parvaneh, V., Sedghi, S., Shobkolaei, N., Shatanawi, W. (2013) Common fixed points of almost generalized $(\psi, \varphi)_s$ -contractive mappings in ordered b-metric spaces, Fixed Point Theory and Applications. (2013), 159.
- [23] Sintunavarat, W. (2016). Fixed point results in b-metric spaces approach to the existence of a solution for nonlinear integral equations. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 110(2), 585-600.